Skip to main content

Geoffroy Hautier

Hodgson Family Professor of Engineering

Research Interests

Computational materials design; ab initio computing; high-throughput computing; machine learning; opto-electronic properties of materials; materials for energy production and storage; transparent conducting oxides; thermoelectrics; photovoltaics; high entropy alloys

Education

  • MS, Engineering, Ecole Centrale Paris (France) 2004
  • MS, Materials Science and Engineering, Université Libre de Bruxelles (Belgium) 2004
  • PhD, Materials Science and Engineering, Massachusetts Institute of Technology 2011

Awards

  • Chemistry of Materials Reviewer Excellence Award (2018 and 2019)
  • Finalist of the Rising Star in Computational Materials Science (2018)
  • Marie Curie Fellow (2012)

Professional Activities

  • Associate editor, npj Computational Materials
  • Group leader for the working group high-throughput screening and data analytics from the psi-k society
  • Reviewer for numerous journals (Nature Communications, Journal of the American Chemical Society, Chemistry of Materials, Nature Materials, Joule, Physical Review Letters, Science Advances, …) and government agencies (US DOE, Germany DFG, Swiss National Science Foundation)
  • Conference organizer: Materials Research Society symposium (May 2016); European-Materials Research Society symposia (May 2015, 2017 and 2019); IUPAC World Chemistry Congress symposium (July 2019); American Physical Society (2021)

Startups

Matgenix
Founder and CSO

Selected Publications

  • First-principles study of the T center in silicon, D. Dhaliah, Y. Xiong, A. Sipahigil, S.M. Griffin, G. Hautier, Phys. Rev. Mater. 6, L053201 (2022).
  • High-throughput computational search for high carrier lifetime, defect-tolerant solar absorbers, D. Dahliah, G. Brunin, J. George, V.A. Ha, G. M. Rignanese, G. Hautier, Energy Environ. Sci.14, 5057–5073 (2021).
  • The Limited Predictive Power of the Pauling Rules, J. George, D. Waroquiers, D. Di Stefano, G. Petretto, G.-M. Rignanese, G. Hautier, Angewandte Chemie, 59, 2–9 (2020)
  • Sr3CrN3: A New Electride with a Partially Filled d-Shell Transition Metal, P. Chanhom, Kevin E. Fritz, L. A. Burton, J. Kloppenburg, Y. Filinchuk, A. Senyshyn, M. Wang, Z. Feng, N. Insin, J. Suntivich, and G. Hautier, Journal of the American Chemical Society, 141, 10595 (2019)
  • Superionic diffusion through frustrated energy landscape, D. Di Stefano, A. Miglio, K. Robeyns, Y. Filinchuk, M. Lechartier, A. Senyshyn, H. Ishida, S. Spannenberger, D. Prutsch, S. Lunghammer, D. Rettenwander, M. Wilkening, B. Roling, Y. Kato, G. Hautier, Chem, 5, 2450 (2019)
  • High-Throughput Identification of Electrides from all Known Inorganic Materials, L. Burton, F. Ricci, G.-M. Rignanese, G. Hautier, Chemistry of Materials, 30, 7521 (2018)
  • High-throughput design of non-oxides p-type transparent conducting materials: data mining, search strategy and identification of boron phosphide, J. Varley, A. Miglio, V.-A. Ha, M. Van Setten, G.-M. Rignanese, G. Hautier, Chemistry of Materials, 29, 2568 (2017)
  • High-Mobility Bismuth-based Transparent p-Type Oxide from High-Throughput Material Screening, A. Bhatia, G. Hautier, T. Nilgianskul, A. Miglio, J. Sun, H. J. Kim, K. H. Kim, S. Chen, G. -M. Rignanese, X. Gonze, and J. Suntivich, Chemistry of Materials, 28, 30 (2016)
  • Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries, J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science, 343, 519 (2014)
  • Identification and Design principles of low hole effective mass transparent conducting oxides, G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, and X. Gonze, Nature Communications, 4, 2292 (2013)

Patents

  • High-capacity positive electrode active material | 9780363
  • Electrochemical device comprising lithium manganese borate compounds | 9172090
  • Mixed phosphate-diphosphate electrode materials and methods of manufacturing same | 9159991
  • Carbonophosphate and related compounds | 8999282

Courses

  • ENGS 24: Science of Materials
  • ENGS 137: Molecular and Materials Design using Density Functional Theory
  • ENGS 85.09: Introduction to Computational Materials Science and Engineering

Videos

Accelerated materials design using high-throughput first principles computations (Seminar)