- Undergraduate
Undergraduate Experience
- Graduate
Graduate Experience
- Research
- Entrepreneurship
- Community
- About
-
Mechanical Behavior of Structural Materials
Increasing our fundamental understanding of structural materials leads to advances in manufacturing, construction, energy systems, medicine, and environmental science, to name just a few. Research focused on ice- and polar-related phenomena can not only facilitate planning for a more resilient future but also be applicable to metals, ceramics and other crystalline materials. Improving the durability of mechanical components and developing advanced composite materials—as well as better understanding the role of mechanical forces and shape engineering—can have significant economic ramifications throughout industry, particularly in the energy, manufacturing, medical and transportation sectors.

Research Subfields
Composite material systems
Deformation and fracture mechanics
Glaciology and climate
Intermetallic compounds
Polymer wear and processing
Snow, firn and ice physics
Thin structure mechanics
Researchers
Properties of Functional Materials
Functional materials—classified on the basis of the functions they can perform—represent a fast growing set of advanced materials and composites, some properties of which (shape, electrical conductivity, mechanical properties, color etc.) are responsive to external stimuli. Because of their unique properties, these materials are advancing innovation in the areas of energy conversion and storage, sensing, electronics, photonics, and biomedicine.

Research Subfields
Electronic assembly
High-performance printed and flexible devices
Micromechanical and electromechanical systems (MEMS)
Multifunctional nanomaterials
Nanomaterials design and synthesis
Optoelectronic materials and devices
Researchers
Biomaterials
Advances in biomaterials facilitate biomedical research and inspire novel designs for implantable and bio-inspired devices. Research focused on orthopedic implants strives to optimize materials for weight, strength, formability, customization, and cost. Material-specific testing of implant retrievals is done to assess and understand changes that occur in vivo as part of the ultimate goal of improving patient outcomes. Work toward better synthetic tissue substitutes is also ongoing with the challenge of developing materials that mimic both the structure and mechanical performance of natural tissue and permit strong tissue-implant interfaces.

Research Subfields
Biomimetic materials and devices
Orthopaedic implant analysis and behavior
Tissue engineering
Researchers
Energy Materials
Materials play a critical role in achieving a sustainable energy future. High-temperature materials enable power plants to increase their operating temperature which increases their efficiency. Demand for high-performance permanent magnets is growing for applications such as wind turbines and electric and hybrid cars. New materials for power electronics can help increase efficiency and reduce both size and cost and are also key for development of low-power sensors and energy harvesting for hybrid electronics. In the case of solar cells, it is highly desirable to use naturally abundant, environmentally-friendly materials which can also pave the way for novel cost-effective battery systems as well as sustainable lighting technology for the 21st century.

Research Subfields
Energy harvesting
Energy storage and conversion devices
Fast reactor fuel materials
High-performance permanent magnets
High temperature materials
Power electronics
Solar and thermophotovoltaic cells
Researchers
Microfabrication
Microfabrication research spans a broad range of disciplines, including electrical, mechanical, and chemical engineering, physics, computer science, and robotics as well as materials science. One of the biggest challenges is devising an efficient means of assembling small parts such as with self-assembly methods or with microrobots that can work together in a microfactory. Applications include cybersecurity, thin-film solar cells, and printed and flexible devices.

Research Subfields
3D nanomanufacturing
Micro-robot fabrication
Self-assembled nanophotonic structures
Researchers
Computational Materials Science & Modeling
Computational methods and modeling as applied to materials science enable prediction and optimization of the properties and behavior of new materials, particularly at the nanoscale. Microstructural evolution occurs by a variety of mechanisms and the ability to predict its effects on the macroscopic properties of materials has a wide range of applications.

Research Subfields
Modeling of microstructural evolution