- Undergraduate
Bachelor's Degrees
Bachelor of ArtsBachelor of EngineeringDual-Degree ProgramUndergraduate AdmissionsUndergraduate Experience
- Graduate
Graduate Experience
- Research
- Entrepreneurship
- Community
- About
-
Search
ENGS 205 - Computational Methods for Partial Differential Equations II
Description
Boundary element and spectral methods are examined within the numerical analysis framework established in ENGS 105. The boundary element method is introduced in the context of linear elliptic problems arising in heat and mass transfer, solid mechanics, and electricity and magnetism. Coupling with domain integral methods, e.g., finite elements, is achieved through the natural boundary conditions. Extensions to nonlinear and time-dependent problems are explored. Spectral methods are introduced and their distinctive properties explored in the context of orthogonal bases for linear, time-invariant problems. Extension to nonlinear problems is discussed in the context of fluid mechanics applications. Harmonic decomposition of the time-domain is examined for nonlinear Helmholtz-type problems associated with E&M and physical oceanography.Prerequisites
ENGS 105Offered
Term: Spring 2024
Time: Arrange
Location: –
Instructors:
Keith D. Paulsen
Term: Spring 2025
Time: Arrange
Location: –
Instructors:
Keith D. Paulsen