- Undergraduate
Bachelor's Degrees
Bachelor of ArtsBachelor of EngineeringDual-Degree ProgramUndergraduate AdmissionsUndergraduate Experience
- Graduate
Graduate Experience
- Research
- Entrepreneurship
- Community
- About
-
Search
ENGS 152 - Geophysical Fluid Dynamics
Description
Geophysical Fluid Dynamics is the study of planetary flows in the atmosphere and ocean basins. It underpins the study of climate dynamics. After a review of the physics of mass, momentum, and energy balances within approximations suitable to planetary flows, and exposition of the effect of planetary rotation (the Coriolis effect), the course continues with the study of boundary layers, waves, instabilities, mixing and turbulence in their planetary manifestations. These concepts are then utilized to study the general oceanic and atmospheric circulations, heat transfer at the hemispheric scale, and climate-affecting large-scale oscillations such as the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), and the El Niño/Southern Oscillation (ENSO). It concludes with specific topics related to sea-ice interactions.Prerequisites
ENGS 34 or permission of the instructorCross Listed Courses
PHYS 115Notes
This course number was previously utilized for a course titled "Magnetohydrodynamics." This previous version is no longer an active offering in the Thayer course catalog. ENGS 152 is now offered as "Geophysical Fluid Dynamics."Offered
Term: Spring 2025
Time: 12
Location: –
Instructors:
Benoit Cushman-Roisin