Immunomagnetic Assay On-a-Chip Captures, Analyzes Circulating Tumor Cells

NCCC

March 24, 2015

To quantify rare tumor markers that will allow oncologists to make prognoses and select therapies, John X.J. Zhang, PhD led a team of bioengineers from Thayer School of Engineering at Dartmouth in demonstrating a novel system that couples nano-engineered particles and microfluidic chips for capturing and manipulating circulating tumor cells (CTCs). The microscale immunoassay can be further interfaced with a fluorescent microscope for cancer cell imaging. Their paper, "Microscale Magnetic Field Modulation for Enhanced Capture and Distribution of Rare Circulating Tumor Cells," was published in Scientific Reports, Nature Publishing Group.

"This project demonstrates that a relatively simple blood test may eventually be able to provide unambiguous information to doctors about particular cancers in individuals," said Zhang.

Live cells represent vital model systems for studying organism development and human disease. Invasive cancers shed tumor cells into the blood and, by detecting those cells at an early stage, physicians will be able to determine a patient's prognosis and best alternatives for therapies. The capture and immunophenotyping  of  CTCs shed by cancers at an early stage, and postulated as the mechanism of development of recalcitrant metastatic disease, is envisioned to revolutionize risk assessment, treatment selection, response monitoring, and development of novel therapies.

Zhang's team focused on creating a new interface between living cells and hybrid microsystems, which enabled rigorous design, modeling, manufacturing, and validation of high-performance and massively deployable bio-analytical microsystems for point-of-care and globally-relevant diagnostic applications.

Read full article