
Communication, Navigation and Control
of an Autonomous Mobile Robot
for Arctic and Antarctic Science

Diploma Thesis

by

Goetz Dietrich and Toni Zettl

Start date: 10/01/2004
End date: 04/01/2005
Supervisor: Prof. Laura Ray
Supervising Professor: Prof. Dr.-Ing. K. Landes

http://www.unibw-muenchen.de
http://engineering.dartmouth.edu/thayer/index.html

Abstract

This Thesis describes two different main fields of work on the Cool Robot.
Cool Robot is a low budget, autonomous mobile robot. The mechanical
design and layout was made as an earlier part of a Diploma Thesis. Most
of the mechanical parts were already produced. This thesis describes the
assembly process for the Cool Robot. What has to be done and which is the
correct sequence are questions that are answered in the Thesis. However,
the main parts of this Thesis deal with the overall navigation algorithm, the
control and the communication and data storage. On the navigation side,
the realization of an open loop course correction is evaluated and shown.
The goal is an autonomous waypoint following path with a top speed of
over 1 m/s. The navigation is therefor entirely based on GPS-data. The
robot‘s main control is done with a 8 bit microcontoller which controls the
brushless DC-motors in velocity mode.

The communication part deals with the connection between the robot and
a laptop or desktop PC through a handheld radio with radio modem. The
communication protocol will be the focus here. The preparation for an im-
plementation of the IRIDIUM connection is also done in this Thesis.

All different kinds of sensor data, e.g., motor currents, etc. have to be
logged and evaluated. Data logging on the main microcontroller itself or
an external Datalogger will be aquired.

iii

Statement

Hereby I do state that this work has been prepared by myself and with the help which is
referred within this thesis.

Hanover, N.H.,03/29/2005

Goetz Dietrich Toni Zettl

i

Foreword

This work is supported by the National Science Foundation grant OPP-0343328.

We would like to thank

Prof. Laura Ray for her great support and help, whenever we needed it. With her advice she
pointed us always in the right direction and led us forward.

Dr. James H. Lever for sharing his exceeding knowledge and experience in the field of Antarc-
tic Science associated with robotics.

Alex Streeter for his active assistance and his broadly advice for all intents and purposes.

The Thayer Machine shop for their ear and hints in all mechanical questions.

The Thayer Instrument room for their supply with all devices and parts needed.

Thank you for making this exchange a great experience.

Hanover, 03/29/2005

ii

CONTENTS iii

Contents

List of Figures v

List of Tables viii

List of Symbols x

1 Introduction 1

2 Assembly process for Cool Robot 8

3 The navigation and monitoring elements 14
3.1 GPS Navigation .17

3.1.1 The Motorola Oncore M12+ GPS receiver19
3.2 Main program for autonomous navigation23

3.2.1 Calculating the distance between two gps positions30
3.2.2 Calculation of gps bearing and off bearing33
3.2.3 Double precision floating point in dynamic C34

3.3 Analog sensors .37
3.3.1 Power and signal supplies and setup for the ADC evaluation board . .37
3.3.2 12-bit, 16 channel Analog to Digital Converter on serial port B39
3.3.3 Dual axis accelerometer used as a tilt sensor44
3.3.4 Motor current and motor velocity sensors46
3.3.5 Function to process the sensor data47
3.3.6 Sensor interrupts .48

4 The overall control unit 51
4.1 Navigation and control mode overview .52
4.2 12 bit Voltage output DAC with serial interface53
4.3 AMC brushless servo amplifier and EAD brushless dc motors55
4.4 The different drive modes of Cool Robot .57

4.4.1 Waypoint following at full speed .59
4.4.2 Waypoint following at partial speed61
4.4.3 Manual Operator .62

4.5 Perspective on further drive modes .64
4.5.1 Charge cycle .64
4.5.2 Stationary data aquisition .65
4.5.3 High centered .66

CONTENTS iv

5 Communication of CoolRobot 67
5.1 IRIDIUM Communication .68

5.1.1 The A3LA-I IRIDIUM modem . 70
5.1.2 Prospect on further use .81

5.2 Radio Communication .81
5.2.1 The Kantronics KPC3plus packet radio modem83

5.3 Controling the CoolRobot via radio link .92
5.3.1 Establish and terminate a connection93
5.3.2 Manual drive mode .95
5.3.3 Waypoint following .97
5.3.4 Other commands and functions .98

6 Data storage 102
6.1 Storage and retrieval of internal sensor data103
6.2 The Campbell CR5000 and CR1000 dataloggers108

7 Software frame work 115
7.1 Definitions, libraries and variable declarations116
7.2 Start up sequence: initializing of variables, file system and serial ports119
7.3 The main loop .124

7.3.1 The modem input block .124
7.3.2 The main control block .125
7.3.3 The modem output block .127

7.4 Different versions of the main programm .130

8 Results of the moving tests 135
8.1 GPS waypoint following position and navigation data135

8.1.1 Autonomous waypoint following at full speed136
8.2 Overall energy consumption on snow .143
8.3 Rolling resistance .144
8.4 Radio Interface and Communication .145

A Functions and library overview 149
A.1 Overview of parameters and variables .151

B GPS position and waypoint following test data 155

C Schematics overview 162

D Source codes 166
D.1 analogin.lib .166
D.2 drive.lib .173
D.3 gps.lib .189
D.4 navigate.lib .201
D.5 radiocomm_e.lib .210

Bibliography 216

LIST OF FIGURES v

List of Figures

1.1 Satellite Photo of Antarctica (Lever) .1

1.2 CoolRobot climbing sastrugi feature .2

1.3 Sastrugie features in Antarctica with 8 inch notebook for scaling6

2.1 Milled honeycomb getting bonded and put in place8

2.2 Inserts with epoxy . 9

2.3 Chassis without and with partition wall .10

2.4 Top view of the support tube mounts and view along one of the axles10

2.5 The aluminum shaft collars .11

2.6 First moving test of Cool Robot .12

3.1 Lat and lon on earth .14

3.2 Visualization of most important terms for GPS navigation16

3.3 GPS positioning test on j parking lot at Dartmouth18

3.4 Options to initialize the GPS unit to output NMEA data19

3.5 WinOncore for Motorola M12+ GPS receiver with GPS data in NMEA format20

3.6 GPRMC example message .21

3.7 Connector M12+ .22

3.8 Flowchart for basic navigation algorithm .23

3.9 Basingpoint and waypoint example (drawing)25

3.10 Startup procedure 1 with Cool Robot pointing north26

3.11 Startup procedure 1 with Cool Robot pointing south27

3.12 Startup procedure 2 with Cool Robot pointing south28

3.13 Example startup navigation (drawing) .29

3.14 Basing point generating example (drawing)30

3.15 Precision for decimal values .31

3.16 Spherical coordinates .31

LIST OF FIGURES vi

3.17 Expression builder for "_double" .34

3.18 Sample SPI communication on serial port B40

3.19 12-bit Control register sectioning .41

3.20 Straight binary vs. twos complement output format42

3.21 Circuit to bias bipolar signals about Vref .43

3.22 ADC DIN and DOUT with analog input signal43

3.23 Velocity monitor out vs. motor revolution47

3.24 High tilt angle interrupt handling sample .49

4.1 SPI Interface .54

4.2 DAC 16-bit data word .54

4.3 Voltage output vs. digital input .55

4.4 Motor revolutions vs. input voltage .56

4.5 Flowchart of drive mode waypoint following at full speed59

4.6 Screen shot of dynamic C code for waypoint following at full speed60

4.7 Overview of motor placement .63

4.8 Drive mode charge cycle .64

4.9 Drive mode stationary get data .65

5.1 Example for an IRIDIUM modem application69

5.2 FDMA versus TDMA .70

5.3 Motorola 9505 A3LA-I IRIDIUM modem 71

5.4 SAF2040-E mobile flat mount antenna .71

5.5 Some sample commands with explanation (AT manual for A3LA)73

5.6 Example for different ways to type commands (AT manual for A3LA)73

5.7 Components needed for packet radio communication82

5.8 KPC3plus front view .83

5.9 1300/2100Hz Frequency Shift Keying .84

5.10 Basic wiring of the KPC3plus radio modem85

5.11 Pinouts MAX3232 RS232 line driver/receiver86

5.12 Wiring of the MAX3232 on the RCM3100 evaluation board87

5.13 Wiring suggestion for ICOM radios .87

5.14 AUTOBAUD routine running on Hyperterminal88

5.15 MYCALL command using Hyperterminal89

5.16 ECHO ON/OFF command using Hyperterminal90

LIST OF FIGURES vii

5.17 Unsuccessful and successful attempt to connect.90

5.18 Structure of KPC3plus data packets .91

5.19 Screen shot of Hyperterminal while in manual drive mode96

5.20 Screen shot of Hyperterminal: sending waypoints99

5.21 Screen shot of Hyperterminal: requesting CoolRobots status100

5.22 Screen shot of Hyperterminal: requesting data from CoolRobot101

6.1 Picture of the Campbell Scientific CR1000 datalogger102

6.2 Picture of Z-Worlds RCM3100 core module103

6.3 Screen shot of FS2 sample program showing specifications of the Flash memory105

6.4 Screen shot of "Short Cut" first step: edit measurement interval109

6.5 Screen shot of "Short Cut" second step: choosing sensors110

6.6 Screen shot of "Short Cut" third step: select tables111

7.1 Rough schematic of CoolRobots software115

7.2 Flow chart of "mainprogV0.34" .131

7.3 Flow chart of "mainprogV0.35" .133

8.1 Cool Robot navigating to a waypoint on lake mascoma136

8.2 Navigation routine at startup .139

8.3 Waypoint and basing point shifting sample140

8.4 Off bearing with basing points every 100 m141

8.5 Off bearing with basing points every 500 m141

8.6 Current draw data on snow .143

8.7 Screen shot of "mapquest.com" showing the starting point and the point the
last transmission was received before losing connection147

B.1 Waypoint following with basing points every 100 m160

B.2 Waypoint following test with basingpoints on waypoints161

C.1 2nd order Butterworth Filter for the 2 axis tilt sensor163

C.2 Conditioning circuit for the analog motor velocitiy and motor current inputs .164

C.3 Schematic of DAC connections .165

LIST OF TABLES viii

List of Tables

1.1 Main topics of work on Cool Robot. 3

3.1 NMEA-0183 Specification Revision 2.0.1.20

3.2 GPRMC message. .21

3.3 Sample structure GPSPosition current_pos.24

3.4 Sample using structure _double. .36

3.5 Analog input channels. .37

3.6 ADC / DAC ribbon cable. .38

3.7 EVAL-AD7490CB power supplies. .39

3.8 Switch and link options on EVAL-AD7490CB.39

3.9 Sensor range handling functions. .49

4.1 Serial port connections and functions for RCM.51

4.2 Control and drive mode overview .53

5.1 Modifiers for Dn. .75

5.2 Modifiers for En. .75

5.3 Modifiers for Zn. .76

5.4 Modifiers for &Cn. .76

5.5 Modifiers for &Dn. .77

5.6 Modifiers for &Kn. 77

5.7 Modifiers for &Wn. .77

5.8 Possible values for +CBST command. .78

5.9 Example: originating a data call. .79

5.10 Example: incoming data call. .79

5.11 Overview of AT command result codes. .80

5.12 Pinouts RS232. .85

5.13 Control keys for manual driving. .95

LIST OF TABLES ix

5.14 Components of navigation data string. .97

5.15 Overview of commands to enter/switch drive modes.99

6.1 Possible values for the ResultCode. .112

6.2 Possible values for BufferControl. .113

6.3 Possible values for DataFormat. .114

7.1 Overview of status variables. .121

8.1 Parameters for waypoint following at full speed 22 mar.137

8.2 Distances and bearings for the waypoints "lake mascoma bridge".138

8.3 Parameters for waypoint following at full speed 24 mar.140

8.4 Overview of distances. .142

LIST OF SYMBOLS x

List of symbols and abbreviations

ADC Analog to Digital Converter

Baud One signalling element per second.

bp basing point

char 8 bit character

cp[1] current point for navigation use

cp[2] last current point used for current bearing

CR Carriage Return also’\r’

CS Chip Select - is used to start a conversion on the selected channel

CTS Clear To Send. A flow control signal in serial interfaces.

DCD Data Carrier Detect. This signal indicates a connection

to the far-end modem for data transfer.

DAC Digital to Analog Converter

DIN Digital Input for a serial port

DOUT Digital Output line for a serial port

DSR Data Set Ready. Another flow control signal.

DTE Data Terminal Equipment e.g. a personal computer running terminal software.

DTR Data Terminal Ready. Yet another flow control signal.

float 32 bit IEEE-floating point

GPRMC Recommended Minimum Specific GPS-data

GPSPosition structure implemented in the code for latitude and longitude

of a position

GSM Global System for Mobile communications.

ICD-GPS-200 Interface Control Document defining characteristics of

and data for the GPS L1 and L2 Signals in Space (SIS)

LIST OF SYMBOLS xi

int 16 bit signed integer value

I/O Input and Output

IRLP Iridium Radio Link Protocol

ISU Individual Subscriber Unit (IRIDIUM modem)

lat latitude

LF Line Feed, same as new line’\n’

lon longitude

NMEA National Marine Electronics Association

NMEA 0183 Interface Standard that defines specific sentence formats for

a 4800-baud serial data bus

PTT Push To Talk

RI (V.24 Signal) Ring Indicate. ISU signal that indicates an incoming call.

RS232 Today named EIA232 and is a common interface standard for data communication

RTS Request To Send.

RX Receive signal

SCLK Serial Clock - Internal Clock of Jackrabbit

SG Signal Ground

SPI Serial Peripheral Interface (three wire)

TTFF Time To First Fix

TX Transmit signal

wp waypoint

XON/XOFF A standard flow control method.

1

Chapter 1

Introduction

The Antarctic Plateau - a large, high altitude mass of ice and snow, covering most of Antarc-

tica and impacts the atmospheric circulation of the Southern Hemisphere. Figure1.1shows a

satellite photo of the entire continent. The Antarctic Plateau is composed of the region high-

lighted.

Figure 1.1: Satellite Photo of Antarctica (Lever)

It is of course extremely cold and dry, but it is also very high and the atmosphere above the

plateau is very calm with low wind speeds at all latitudes. That makes the Antarctic Plateau a

unique location to study the upper atmosphere at high magnetic latitudes, providing a stable

environment for sensitive instruments that measure the interaction between the solar wind and

2

the Earth’s magnetosphere, ionosphere, and thermosphere [1].

Few Robots have been build to discover the Antarctic Plateau. They were very heavy and

driven by combustion engines. These expeditions need either a high assignment of person-

nel, which is a problem in the harsh weather conditions in Antarctica, or a large transportation

capacity which is very expensive, limited by the small size of the Twin Otter arid transport air-

craft flying within Antarctica and entail hazards at remote landing and takeoff sites. Carnegie

Mellon University for example developed NOMAD, a 725 kg gasoline-powered robot for

polar and desert environments with a size of 2.4x2.4x2.4m [2]. The much smaller Spirit and

Opportunity are Mars Exploration Rovers from NASA/JPL. Each 2.3x 1.6x 1.5m rover weighs

174 kg and has a top speed of 5 cm/s [3] and is powered by a multi-panel solar array.

The task was to build an Autonomous Mobile Robot which can be released at the South Pole

station and traverse on the Antarctic Plateau during the austral summer within a range of 500

km in a time of 2 weeks without any maintenance. That is possible, because the robot is pow-

ered by renewable energy, the sun. The Antarctic Plateau gives very good reasons for using

solar energy. During the austral summer month the direct insolation from the sun averages

1000 W/m2. Also the reflected sunlight by the large flat snow areas is significant. The robot

should have an empty mass of less than 75kg and should fit in the Twin Otter aircraft. Figure

1.2shows the completed robot chassis.

Figure 1.2: CoolRobot climbing sastrugi feature

3

The basis for our work was the Diploma Thesis from Guido Gravenkötter and Gunnar Hamann

[4] and the honor‘s thesis of Alex Price [5]. Reference [5] deals with the conceptional work

on the robot and the major influence on the design of a solar powered robot. Hamann‘s and

Gravenkoetter‘s contribution was to prove the viability of the project. They tested different

components such as the brushless dc-motors, the li-ion batteries and the power supply in a

cold chamber to see the influence of cold temperatures down to -40◦ C.The conclusion was

that the new generation of solar panels will provide enough energy needed for the propul-

sion.The other conclusion of [4] was that the navigation has to be based on waypoints and

GPS data only, because a magnetic compass does not work on the high magnetic latitudes on

the Antarctic Plateau.

Reference [5] completed the robot design, including CAD models of all components and

structural analysis. The mechanical design of the robot is based on a very light but strong

honeycomb composite made of fiberglas and Nomex.

This thesis describes three different parts of work on the Cool Robot:

1. assembling of the chassis

2. navigation and control

3. communication and datalogging

Table 1.1:Main topics of work on Cool Robot.

The first part is the assembling of the honeycomb chassis and the motors and drive trains.

CoolRobot project started in winter 2003/2004 with the conceptional work. During the sum-

mer 2004 Alex Streeter, Alex Price and Dan Denton made most of the mechanical parts for

the robot. The honeycomb panels were cut in pieces for the main chassis, the solar panel at-

tachment arms the stiffeners, and the lid. The EAD-brushless motors were mounted to the

gearhead and ready for their implementation in the chassis. The aluminum rims for the 16

inch or the 20 inch ATV tires were welded to the axis. On the logic side, the jackrabbit itself

was ready for testing, because it was mounted to the evaluation board. The circuit for the 8

channel Analog Digital Converter MAX186 for reading the analog sensors and the Digital

Analog Converter MAX536 to control the motors was build. The design of the solar power

4

system is the work of Alex Streeter’s M.S. Thesis. Five separate, custom-built solar panels

feed power onto a common bus, which is then distributed to the motors and housekeeping

electronics. A bank of Li-Ion batteries act as a buffer for the bus and provide auxiliary power.

The first part of our work was to assemble the chassis, adapt the motors to the chassis, and

provide the support tubes for the axis. Configurating the microcontroller to communicate with

the ADC the DAC, the GPS unit, the Datalogger and the modem would be the main part of

our work. Finally, we had to program the different algorithms to drive the motors, read the

different sensors, communicate with the modems, read the gps-data, and control the robot in

various modes of operation.

Toni‘s main tasks are the communication between the robot and a human operator and the

storage and retrieval of data the robot collects during it’s journey. The only way to stay in

touch with the robot while it is traveling around on the Antarctic Plateau is a connection over

IRIDIUM-modem, which is at the moment the only provider of truly global mobile satellite

voice and data solutions. The system provides a complete coverage of the earth‘s oceans, air-

ways and most important for our application, the polar regions. With this connection the robot

is able to report problems, transmit a portion of the collected data, or request new waypoints.

On the other hand, an operator has the possibility to check the condition of the robot, request

data and send new or changed waypoints. When the robot is deployed in the Antarctic it will

equipped with an IRIDIUM transceiver. The big disadvantage of this system is the high price

for this unlimited availability. The transceiver itself is priced around $1200 and every minute

of connection costs $2 within the United States and $7 elsewhere in the world. Therefore an-

other, cheaper system will be used during the development of the robot and the first field tests

in Greenland. The easiest way to establish a wireless connection and transmit digital data is

a radio connection using a data modem. With the help of two handheld radios and two radio

modems one is able to control the motion of the CoolRobot manually or monitor the behaviour

of the machine while navigating autonomously over a distance of approximately 2 km.

The CoolRobot will also be equipped with a datalogger to record scientific data from the

payload. This data is analog and can be retrieved when the robot returns to its base. Especially

during testing and the first run in the Antarctic all the sensor data the robot uses is a matter of

particular interest. So, all this digital data will be stored too. The latest sensor-readings will be

5

stored within the limited flash memory of the microcontroller. If the robot encounters a critical

situation this data will be send to the operator who then is able to reconstruct the situation of

the robot. Older data will be filtered and passed to the datalogger. Thus, one can reconstruct

the behaviour and condition of the robot during the whole journey.

Goetz deals with the overall control and navigation algorithm based on waypoint following

through GPS. The robot‘s main intelligence are two microprocessors which are programmed

in Dynamic C a computer language similar to C++. One is used for the power management,

which is Alex Streeter’s M.S.thesis. The second microcontroller is for communication. It com-

municates with the GPS-Receiver to get the GPS-data, with a Digital-Analog-Converter to

control the 4 brushless dc-motors and with an Analog-Digital-Converter which reads the sen-

sors such as wheel speeds, motor currents and tilt angles. So the first task was to write the

code for the microcontroller to take the readings from the Analog-Digital-Converter. Getting

the GPS position data, it calculates basing points in a specified distance from each other on

the track between waypoints and corrects its heading by open loop control.

The Antarctic Plateau consists of over 5 million square kilometers relatively flat terrain. The

surface of the snow is very hard and has a lot of wind blown sastrugi with a size up to 25

cm which are a challenging task for the control and navigation algorithm. Figure1.3shows a

typical sastrugi field along with a breifcase of height 20 cm. Navigation through sastrugi fields

may cause brief dislocation of several degrees in bearing. But for the distance from waypoint

to waypoint being about 50 kilometers, the distance off from its calculated track can be 20

meters or more without incurring major path deviations. Specific problems the sastrugis can

cause are high centering and tipping over. To avoid high centering, the wheel speed sensors

and the motor currents are set up to detect wheels that are not in contact with the snow. The

bottom of the robot is plated with polyethylene, which has a very slick surface to make a slide

to one side easier, enabling a control routine to get unstuck. (see chapter4.5.3) Dr. James

Lever took a picture on Ross Ice Shelf while travelling on the traverse from McMurdo station

to the Leverett Glacier and Polar Plateau in december 2004. The picture shows the wind blown

sastrugi features on Ross Ice Shelf with a notebook 20 cm large.

6

Figure 1.3: Sastrugie features in Antarctica with 8 inch notebook for scaling

To avoid the robot from tipping over, the 3-axis-tilt-sensor sends an interrupt to the control

algorithm (see chapter3.3.6).

This thesis starts with the assembling process for Cool Robot. We hope to give a summary

of good practices for handling the honeycomb and some useful hints for refining next Cool

Robot design.

Chapter 3 deals with the navigation of Cool Robot and provides all the necessary information

to understand the basic mode of operation of the gps receiver as well as the main navigation

program of Cool Robot and the monitoring of the analog sensors. In chapter 4 the control

algorithms and the different drive modes are presented.

Chapter 5 introduces to the communication of CoolRobot. An overview of the future IRID-

IUM communication is given, as well as a detailed description of the communication via radio

link.

In chapter 6 a short outline on the data recording capabilities is presented. On the on hand

using an external datalogger and on the other hand using the storage capabilities of the micro

controller.

The structure and functionality of the CoolRobots software is described in detail in chapter 7.

It can also be seen as a basic introduction to the DynamicC programming language with some

7

of its advantages and disadvantages for our application.

The test results such as current draw and energy consumption, waypoint following position

data, and communcation protocol are presented in chapter 8

8

Chapter 2

Assembly process for Cool Robot

This chapter should give the reader an impression of how extensive even the assembly process

for a simple robot is. By documenting weak points in the mechanical design and minor or

major difficulties during the mechanical work, we want to achieve improvements in reliability

and performance for the next generation of CoolRobots. The outcome should be an update

that makes the next generation of CoolRobots better and a choice to beat! The combination

of the honeycomb chassis and the new generation of solar cells with a high efficency helps

CoolRobot to be an alternative solution for heavy and expensive robots such as NOMAD for

example.

Figure 2.1: Milled honeycomb getting bonded and put in place

The structure of the honeycomb allows to mill just the fiberglass layer on one side, to fold or

bend the panel perpendicular. When got into the project, almost all parts for the honey comb

9

chassis where already cut and milled by Alex Streeter and Alex Price. Some of the aluminum

parts for the drive train where also available, like the wheels, axles and the retainers for the

motors and gear heads. Thus, our task was finishing the remaining parts, and putting them

together to a rolling chassis.

The first step was the gluing of the chassis body.

Figure 2.2: Inserts with epoxy

Before actually gluing it together we had to drill

holes for the support tubes and the inserts for

mounting the motors and the top lid, since it is

easier much easier to do this as while the body

still is a flat piece of honey comb, instead of an

upright box. Figure2.2 shows the process of ap-

plying epoxy to an insert prior to securing the

fastener to the chassis. Furthermore pieces of an-

gle aluminum must be cut into length and sand-

blasted. The angle aluminum is used to reinforce

the corners of the folded body, sandblasting them

is necessary to roughen the surface and guarantee a good bond between aluminum and hon-

eycomb. By the way, the contact surface of all aluminum parts were sandblasted and cleaned

before their use. As adhesive a two part epoxy containing aluminum dust is used. It provides

high strength and the ability to fill the spaces within the honey comb. The best choice to keep

the folded body in place for as long as the two part epoxy needs to cure up was a welding

table, since it provided the best possibilities to position the chassis using brackets on each

side of the chassis. One rectangular corner was aligned with brackets, to start the gluing in

this corner. All contact areas at the edges as well as the milled inside of the edges to bend up

where covered with a thin layer of the epoxy. All four sides were folded up to right angle and

the the remaining two sides were fixed by two more brackets. The result is shown in right half

of figure2.1. After aligning the chassis correctly the angle aluminum was glued to the insides

of all four corners.

10

Figure 2.3: Chassis without and with partition wall

The next step was adding two partition walls to the corners of the chassis where the motors

are located. Since the motors are screwed to the chassis box itself and the partition walls we

also drilled the holes for this connection before gluing the walls to the box. That was not

an ideal solution, since there is no guarantee for a correct alignment of the motors. Thus, on

further generations of CoolRobots the holes in the partition walls and the chassis box should

be drilled after adding the mounts for the axle to align the motors as exact as possible and

avoid unnecessary high friction within the drive train. To add more strength to the partition

walls angle anluminum was used to reinforce the connection on either side of the walls and

on the bottom.

Figure 2.4: Top view of the support tube mounts and view along one of the axles

11

After that the mounts for the support tubes (see figure2.4) were glued to the chassis. To assure

an exact alignment of both support tubes on one axle a long piece of the aluminum tube used

for the support tubes was used through the tube holes on both sides of the robot. The tube

remained within the axle over night until the epoxy cured up completely. Since the mounts on

the outside consist of two independent rings some of the epoxy could have reached the tube,

thus to avoid gluing the tube to the mounts we moved it from time to time.

In the meantime the shaft collars were milled and

Figure 2.5: The aluminum shaft

collars

the inner parts of the rims were welded to the ac-

tual axles. Furthermore, all inserts were glued to

the chassis, and the motor and gear heads were

mounted too. For gluing the inserts we coated the

contact areas with epoxy, put both parts with a

screw and nut to the desired hole and tightened

the screw carefully until both parts of the inserts

engaged.

The next step was finishing the support tubes and gluing them in place. The tubes were cut to

length and on one side the inner diameter of the tube was enlarged a little bit to the bearings

within. Furthermore a groove for the retaining ring was milled to the very end of the tube.

The finished support tube was now glued to the mounts also using the two part epoxy. After

this step the whole drive train was mounted to the chassis, beginning with screwing the shaft

collars to the gear head, then fitting the bearings to the support tubes and fastening them

with the retaining rings. Now, the axles could be inserted and screwed to the shaft collars

and finally the wheels were screwed to the axles. As the rolling chassis was finished the

electronic components were added to the chassis. The motor controllers were mounted to the

side walls of the chassis near their appropriate motor using two screws for each controller

glued to the walls. By the time we finished the assembly to a drive able robot, the first test

pieces of software were finished too. One of them was a routine to adjust the output of the

motor controllers via the DynamicC compiler window and keyboard inputs. So we started first

driving tests. At the very beginning we droe just within the building but we soon decided to

take it outside to check its maneuverablity, speed and also the strength and flex of the chassis.

12

Figure2.6shows photos from the first outdoor tests.

Figure 2.6: First moving test of Cool Robot

After some testing with the robot, the decision was made that the robot should be equipped

with 20 inch tires instead of the 16 inch tires it was running at the moment. The benefits herein

are a 2 inch increased ground clearance and due to the fact the 20 inch tires are slightly wider

also a decreased ground pressure and sinkage. Furthermore the tread pattern of the 20 inch

tires seemed more efficient for driving on snow than the pattern of the 16 inch tires. So we

switched to the larger tires. This procedure took almost one day, since it was quite a bit of

work to remove the small tires from the rims. Removing the first half of the rims was pretty

easy using clamps to compress the tire until one of the two halves was free. To remove the

second half from the tire, we had to use clamps and wood to move it step by step. In contrast,

putting the new tires on was pretty easy and involved putting both halves of the rims together

with some new sealing compound and the new tires in between and inflating the tire to about

30psi until the tire pops into the correct place on the rim. To help the tires sliding on the rim

some soap and water was used as lubricant.

The last part of the Assembly process was fitting the top lid to the robots chassis. The first step

was cutting the sidewalls of the lid to their final height and drilling the holes for the inserts.

This was not easy, since the inserts on the chassis sidewalls were not exactly in a straight line

and in perfectly equal distances to each other. So we had to custom fit almost every hole to

achieve as much matching inserts on the top lid and the chassis itself. The exact fitting was

done while gluing the top lid together: we glued one side of the lid at a time and focused the

13

inserts of the top lid by screwing them to their respective insert on the chassis. Doing one

side after the other in this manner we assured the best possible fitting. The next day when

the epoxy on all inserts was cured completely we started with the actual cluing of the top lid.

We screwed one side of the lid to the chassis and then coated all necessary contact areas with

epoxy. After this the lid was folded down to the chassis and the other three sides were focused

too. Since almost all insert holes were focused with screws the lid cured up keeping exactly

the right shape. Finally a hole was drilled to the middle of the top lid trough which cables for

the GPS antenna, the radio and the Jackrabbits programming cable can be lead.

During all the testing the Cool Robot’s concept proved itself by being an easy and reliable

robot. The only real problem we encountered during this time was the connection between

gear head and axle. The aluminum shaft collars produced some problems with the drive train.

The aluminum does not provide enough strength in this application, there is too much slack-

ness at the key on the gear heads axle. Thus the wheels can turn several degrees without any

movement of the motors. Furthermore the aluminum of the shaft collars and the robots axle

bond together due to some small parts of aluminum in between. This made big problems when

trying to disassemble the drive train. Therefore the suggestion is to use another material, e.g.

steel, for the shaft collars in the future. Maybe not only on further generations of Cool Robot

but also before testing in Greenland and definitely before deploying it in the Antarctic.

14

Chapter 3

The navigation and monitoring elements

The navigation of Cool Robot is limited by the budget restrictions for the project. Cool Robot

is a low cost autonomous robot for Antarctica. The fact that the magnetic South Pole and

the geographic South Pole vary from each other does not have great effect on navigation by

magnetic compass in our latitudes, but the bearing difference does increase the closer one gets

to the Poles. Precise bearing information for navigation use on the Antarctic Plateau can be

provided by a triaxial magnetic compass but is not intended for our project.

Due to expense, the navigation for Cool Robot

Figure 3.1: Lat and lon on earth

is based entirely on GPS(Global Positioning

System) (see chapter3.1).

Coordinate planes for determining positions

on earth have existed for many centuries. His-

tory has brought up many different ways of

longimetry and goniometry. Today the sys-

tem of latitude, longitude and height is the

most popular one. The prime meridian in

Greenwich and the equator are the references

for the definition of latitude and longitude. The latitude degrees start from the equator with

0◦ to North and South Pole with 90◦‘N‘ or ‘S‘. The distance between two latitude degrees is

15

always the same and does not change. For one latitude degree being divided into 60 arc min-

utes which have a distance of 1 nautic mile, the distance between two degrees is 111.136 km.

One latitude minute is again divided into 60 seconds. Longitude degrees and minutes are also

divided into 60 arc minutes and these again in 60 arc seconds. The longitude is measured up

to 180◦ west or east. The distance between two longitude degrees is not constant and changes

with latitude.

The following chapter deals with the main navigation algorithm of the Cool Robot. The most

important terms are explained here for better understanding:

waypoint: A waypoint is a GPS position consisting of latitude and longitude transmitted to

the robot by the user. A maximum of 100 waypoints can be saved in an array. By means of the

waypoint coordinates and the current position, the distance to the waypoint and the heading

can be calculated.

current point : A GPS data string in NMEA format from which the current position of the

robot is parsed. Used to calculate and correct the traveled course.

basing point: A GPS position generated in a distance given by the user on the track connecting

two waypoints. In our case they are generated every 1000 m to reduce the offset from the track.

initial distance: The distance between two waypoints. For the first navigation cycle at startup,

the initial distance is the distance from the first current position to the first active waypoint.

The initial distance does not change during navigation until the waypoint is reached and the

next waypoint is activated.

initail bearing : The bearing between two waypoints. For the first navigation cycle at startup,

the initial bearing is the bearing from the first current position to the first active waypoint. The

initial bearing does also not change and is calculated together with the initial distance.

distance to waypoint/ basing point/ current distance: The distance between the current

position and the mentioned point in km. The current distance is the distance between the last

two current positions.

16

bearing to waypoint/ basing point/ current bearing/ off bearing: The bearing on which

one would reach the waypoint/ basing point when traveling on. The bearing is measured in

true degrees from north, counted clockwise. The current bearing is calculated between the last

two current positions. The off bearing is the number of degrees the robot needs to turn to head

to the desired position (e.g. waypoint).

offset from track : The offset from track is the smallest distance to a direct connection be-

tween two waypoints. The length of the perpendicular to the track through the current posi-

tion.

Figure 3.2: Visualization of most important terms for GPS navigation

The main principle of the navigation is waypoint following (see chapter3.2). Cool Robot re-

ceives GPS data, which includes latitude and longitude for the current position. The user

provides a list of waypoints he wants the robot to reach. By calculating its current position the

robot then travels on a predetermined path to the next waypoint. When within a certain range

of that waypoint, the path to the next waypoint will be calculated. For two waypoints being

away from each other over 10 km, the robot generates basing points (see chapter3.2) on the

track in a distance of 1 km to each other.

3.1 GPS Navigation 17

3.1 GPS Navigation

Everybody has heard about Global Positioning System, but how exactly can a robot travel in

Antarctica only relying on the GPS Signal?

The NAVigation Satellite Timing and Ranging (NAVSTAR) Global Positioning System is an

all weather, radio based, satellite navigation system that enables users to accurately deter-

mine 3- dimensional position, velocity and time worldwide. The GPS-System was originally

invented for the military and is run by the American Department of Defense. The System con-

sists of 24 satellites operating in 12-hour orbits in an altitude of 20,200 km around the Earth

that emit signals which can be received on Earth by GPS receivers. The constellation is divided

in six orbital planes, each with 4 satellites equally spaced around the equator and inclined at

55 degrees. The GPS receiver on earth determines position by passive multi-lateration. With

knowledge of the transmission time for each signal, the distance to each satellite with known

coordinates in space can be calculated.

To determine the correct 3 dimensional position (latitude, longitude and altitude) the receiver

needs the clock offset. Therefore, a minimum of four satellite observations are required to

mathematically solve for the four unknown receiver parameters. If the altitude is known, then

only three satellite observations are required. However, that is not a guarantee for consistent

accuracy. The accuracy depends on the number of satellites tracked. With 5 or more satellites

the receiver‘s position can be accurate up to a few meter (Figure3.3). The accuracy can be

increased up to less than 1 meter with Differential GPS (DGPS). Hereby the receiver‘s signal

is corrected with a second GPS signal send out by a stationary GPS receiver on Earth. The

correction signal is sent in a longwave signal. The correction stations are generally provided

in coastal regions and driven by the coast guard. CoolRobot will have a DGPS receiver for the

testing in Greenland but for the navigation during this thesis it is equipped with a Motorola

Oncore M12+ receiver (see chapter3.1.1).

Figure3.3shows some driven tracks against the background of the j parking lot on Dartmouth

campus. The speed was around 1 mph. The gps position data was evaluated and charted with

excel. It should be used to receive an impression on the GPS‘s accuracy. During the testing,

3.1 GPS Navigation 18

five satellites were tracked.

Figure 3.3: GPS positioning test on j parking lot at Dartmouth

Besides the latitude and longitude position information the NMEA-0183 GPS data string also

includes information about speed over ground and current bearing. The speed over ground is

accurate enough to tell a movement of the robot, even at low speeds around 0.5 m/s, whereas

the bearing is of no use for the navigation algorithm. The GPS bearing is internally calculated

with the two last positions. As the distance between two points apart 1 second in time, the

distance between these points is 1 m, assumed 90 % of the robot‘s top speed. That makes

a precise bearing calculation impossible. The result is, that the robot will have no usable

information about the current heading, while making a turn or standing still on one point.

The conclusion is to have an open loop course correction based on course GPS readings, or

upgrade the robot if necessary with a triaxial magnetic compass.

3.1 GPS Navigation 19

3.1.1 The Motorola Oncore M12+ GPS receiver

The GPS receiver on the evaluation board M12+ is provided with +10 V supply voltage.

The I/O-command format is Motorola Binary at 9600 baud. The commands can be used to

initialize, configure and control the receiver. The receiver does also provide I/O-commands

in NMEA-0183 format at 4800 baud, but these commands can only be used to change the

transmitted GPS data string (e.g. output rate). For all I/O-commands see M12+ receiver user‘s

guide chapter 5. The best way to initialize the receiver is by using the software WinOncore on

a PC. The serial port has to be connected to the GPS receiver with the provided 9-pin serial

cable. The serial port on the PC has to be opened at 9600 baud.

If the receiver is started up after a longer non-operated period of time, the user should allow

the receiver 3 to 5 minutes to power up. That time is called TTFF (Time To First Fix). The

receiver must now perform a Cold Start, where position, time, and almanac information are not

available. The satellite almanac files each contain information about GPS reference week, the

almanac reference time, required data to identify a satellite, satellite health status, longitude

of orbital plane and more (see ICD-GPS-200 for detailed description). Note that a cold start

is not a serious problem, but TTFF will be somewhat longer than if the information had been

available. The main thing to keep in mind is that the receiver coming up in a Cold Start

scenario is defaulted to Motorola Binary protocol, and NO MESSAGES are ACTIVE. The

receiver is running through its normal housekeeping routines, developing new fix data, etc.,

but it will not send any of this data out of the serial port until it is requested.

Figure 3.4: Options to initialize the GPS unit to output NMEA data

3.1 GPS Navigation 20

Using the software Winoncore, the receiver can be initialized easily by selecting the desired

output format and rate from once a second to once every 9999 seconds. After setting the output

format, NMEA Protocol has to be enabled (Figure3.4).

The GPS data string sent to the serial port is displayed in the command monitor window

(Figure3.5) and accessed by "Cmd Mon". The receiver now is ready to be connected with

serial port C on the Jackrabbit microcontroller (Figure3.7).

Figure 3.5: WinOncore for Motorola M12+ GPS receiver with GPS data in NMEA for-

mat

The software compiles the Motorola Binary I/O-commands to initialize or configure the GPS

receiver. Once in NMEA format the user can decide between following different NMEA out-

put messages:

Message Description

GPGGA GPS Fix Data

GPGLL Geographic Position Latitude/Longitude

GPGSA GPS DOP and Active Satellites

GPGSV GPS Satellites in View

GPRMC Recommended Minimum Specific GPS/Transit Data

GPVTG Track Made Good and Ground Speed

GPZDA Time and Date

Table 3.1:NMEA-0183 Specification Revision 2.0.1.

The easiest way to change the receiver‘s output is with the software. Otherwise see Motorola

3.1 GPS Navigation 21

M12+ GPS receiver user’s guide chapter 5. For our application we decided for an output of

the GPRMC message once per second:

Figure 3.6: GPRMC example message

$GPRMC message header

154425.00 UTC time of the position fix in hours, minutes, and seconds

A current position fix status with A designating a valid position, and V an invalid

4342.5660 current latitude in degrees and minutes

N direction of the latitude with N indicating North and S indicating South

07216.9153 current longitude in degrees and minutes

W direction of the longitude with W indicating West and E indicating East

2.4 current ground-speed in knots

338.0 current direction, referenced to true North

190105 UTC date of the position fix

*28 checksum

Table 3.2:GPRMC message.

The M12+ receiver is used with the backup battery which is not necessary, but useful for sav-

ing setup information, especially the data output format and increasing the speed of satellite

acquisition and fix determination when the receiver is powered up after a period of inactiv-

ity. Battery equipped M12+ receivers are fitted with rechargeable 5 mAh cells, sufficient for 2

weeks to a month of backup time, depending on temperature. To recharge the cell, the receiver

must be powered up, a complete empty battery needs up to 24 hours of charge time. If set to

default, the receiver can be configured with the software again.

The GPS receiver is connected to the alternate RS232 pins for serial port C on the Jackrabbit

(J5). (rxc = pin4, txc = pin6, gnd = pin9) The connector for the receiver is a standard 9-pin

serial connector and wired as shown.

3.1 GPS Navigation 22

Figure 3.7: Connector M12+

3.2 Main program for autonomous navigation 23

3.2 Main program for autonomous navigation

The navigation function navigate is written in the library navigate.lib and follows the flowchart

in Figure3.8.

Figure 3.8: Flowchart for basic navigation algorithm

3.2 Main program for autonomous navigation 24

The navigate function is the heart of the navigation algorithm. It is a function called from

the drive mode "wp_follow_full()" or the drive mode "wp_follow_partial()" in certain time

distances. It makes the decision for a course correction (see chapter4.4 for description of

drive modes).

The NMEA-GPS data string is assigned to the function and the data string has to be parsed.

Therefor the function "gps_get_position" in the gps.lib is called. The function compares the

string header with the known NMEA messages, in our case "$GPRMC". If the header does

not match any of the known messages, the function returns -1 as value. If the GPS data string

is not valid, because the receiver is not tracking enough satellites, the function returns -2. If

the header is known and the data string is valid, the function now parses the position data and

stores it in a variable with the structure "GPSPosition" defined in the gps.lib. The structure

"GPSPosition" consists of:

(int) current_pos.lat_degrees

(float) current_pos.lat_minutes

(char) current_pos.lat_direction

(int) current_pos.lon_degrees

(float) current_pos.lon_minutes

(char) current_pos.lon_direction

Table 3.3:Sample structure GPSPosition current_pos.

That makes an easy access to the integer part of the latitude and longitude possible: "current_

position->lat_degrees" .

The most important thing for the navigation algorithm is a correct transmission of the GPS-

data string. There can be all different kinds of problems in parsing the correct GPS-position.

To exclude the most transmission errors, the function to parse the NMEA-data string "gps_get

_position" makes some comparisons. Programmed from Z-World was the checking of the

header which are the first 6 characters. They also checked if the incoming string contains any

valid GPS position data or if the number of satellites did not suffice for a position determi-

nation. I also implemented a comparison of the directions of latitude and longitude. If the

header is not one of the known NMEA formats or if the NMEA-data is invalid, the navigation

3.2 Main program for autonomous navigation 25

algorithm will try to get a valid reading of GPS-data once every second until it succeeds. In

the case of not having any valid readings for 30 seconds, adjusted by "GPS_inv_limit" the

robot will change into manual drive mode without driving any distance. In that case a notice

of "GPS parsing error" or "GPS sentence invalid" will be sent out to the modem. This notice

will also be sent if one of these errors occured once but the robot will start navigating once

received valid GPS-data.

If the current position was parsed properly, the active waypoint is selected from the array of

waypoints given by the user. At startup the function recognizes that it was called for the first

time if the variable "wp_start" is 0. Then the initial distance to the active waypoint in km

is calculated with the function "gps_ground_distance" in the gps.lib. With the distance from

startpoint to first active waypoint, the bearing to that waypoint in true degrees is calculated.

A bearing value of 360◦ or 0◦ means the robot is heading to the geographic North Pole and

180◦ means the robot is pointing to the South Pole. Once in Antarctica, CoolRobot will have

waypoints with a distance of 50 km or more. To assure that the offset from the track to each

waypoint does not increase beyond a limit, basing points are generated in a predetermined

distance to each other on the track from waypoint to waypoint. The distance to basing point

"dist" is calculated in the "navigate" function at startup. The distance to the active waypoint

is divided by 1000 m and the result is rounded off to an integer. The initial distance is then

divided by that integer and will give a distance between basing points close to 1000 m. That

calculation is made to make sure that there is a whole number of basing points between two

waypoints and that the last basing point is the waypoint.

Figure 3.9: Basingpoint and waypoint example (drawing)

3.2 Main program for autonomous navigation 26

The last thing done in the startup procedure is that 1 is added to wp_start, so that the func-

tion does remember it’s starting point. If the navigation algorithm was called for the first

time ("wp_start == 0"), the current position saved in "current_pos[1]" is also saved in "cur-

rent_pos[2]. These two positions are used to calculate the robot‘s bearing. They are the trav-

eled positions 30 seconds apart in time wheras the time is an adjustable parameter (tm_nav).

For running through the navigation algorithm for the first time, there is no current position

from the last navigation cycle. I had two different ideas of how to proceed on the startup in

drive mode "w_follow_full". The first one is to place the robot pointing north. The current

distance at startup is 0 km and the calculated bearing between the two sample points is also

0. So at startup Cool Robot thinks his heading is north and makes a turn for the off bearing

degrees between -90◦ and 90◦ depending on the initial bearing. If the robot‘s heading is north,

in the best case the turning to the desired heading takes one navigation cycle as outlined in

Figure3.10.

Figure 3.10:Startup procedure 1 with Cool Robot pointing north

In the worst case, the robot is pointing south instead of north at startup. That will not cause

serious problems, but takes some more navigation cycles to head to the desired course to the

waypoint or basing point as shown in Figure3.11.

3.2 Main program for autonomous navigation 27

Figure 3.11:Startup procedure 1 with Cool Robot pointing south

The dimensions for the whole course correction procedure look larger than they are. Com-

pared to the distance to the waypoint, the distance for the offset from the track caused by a

south pointing at startup is only about 0.5%.

The second method to proceed during startup is to take the GPS-position first and parse it for

current point[2]. Then the robot will speed up and drive straight ahead for x seconds, defined

with "tm_nav" and then it will take the current position[1] and start the first navigation cycle

as outlined in Figure3.12. The advantage of the second method is, that the robot does not

make any useless turns that are wrong, because it does not know its heading. The idea behind

that is, that there will be a lot of interruptions forcing the robot to switch the drive mode from

"wp_follow_full" to "high_wind_speed" or "high_centered". As the robot changes its heading

in one of the different drive modes, it has no precise information on the current bearing without

any movement once back in drive mode waypoint following at full speed or partial speed. To

keep the number of navigation cycles to turn into the desired bearing as small as possible,

method two is implemented in the naviation algorithm at this point. If the robot switches the

drive mode to waypoint following it may drive 30 seconds in the wrong direction but recovers

that at the first navigation cycle instead of possibly turning to the wrong direction.

3.2 Main program for autonomous navigation 28

Figure 3.12:Startup procedure 2 with Cool Robot pointing south

The function to make course corrections is open loop. That means there is no feedback during

the turning itself. This is due to the impreciseness of the bearing information and the lack

of a compass (see chapter3.1). But the open loop correction meets the requirements for our

project. What are 10 m on a whole continent of ice?

For the course correction, I measured the time it takes the robot to make a 360◦ turn while

driving the motors on one side at only 90% speed instead of 100% for waypoint following at

full speed and one side at 50% instead of 60% for waypoint following at partial speed. That is

possible because the motorcontrollers are setup in velocity mode. That means they try to keep

the motor at the desired speed by drawing more current.

For example, if the initial bearing to the first active waypoint is 230◦, the function calculates an

off bearing of -130◦ without taking the robot‘s current heading into account. The off bearing

range is converted from0◦ ≤ α ≤ 360◦ to −180◦ ≤ α ≤ 180◦ with a negative value

causing a left turn and a positive value causing a right turn and a bearing is generally measured

clockwise. To avoid imprecise turning angles, I limited the maximum turning angle for one

3.2 Main program for autonomous navigation 29

navigation cycle to 90◦.

The current position after finishing the turn is stored and parsed into current point[2] for the

next navigation run. The robot now travels straight ahead for 30 seconds to start the next

navigation cycle with current point[1]. The distance between current point[2] and current

point[1] is calculated to determine the current bearing. Traveling with a maximum speed of

1.25 m/s, the distance should be greater or equal 30 m. That is accurate enough for the gps

receiver’s position data.

Figure3.13points out the necessity for basing point generation.

Figure 3.13:Example startup navigation (drawing)

The current bearing on navigation cycle 2 is almost equal to the bearing to the active waypoint,

but varies from the bearing to the basing point. If the robot would head to the waypoint, no

course correction would be made and the robot would travel on a path parallel to the calculated

track. With basing points, the traveled path is more predictable because the robot makes more

course corrections towards the calculated course. If the robot reaches a distance of less than

20 m to a basing point, the next basing point on the track is generated and the robot follows

that new bearing (Figure3.14).

3.2 Main program for autonomous navigation 30

Figure 3.14:Basing point generating example (drawing)

3.2.1 Calculating the distance between two gps positions

The function to calculate the distance between two positions was already written, as part of

a diploma thesis. But when I first tested the waypoint following or especially the navigation

algorithm, with some special values of the two longitudes, a domain error was produced in

the "gps_bearing" function. In one example case, the algorithm tried to calculate arccos(-

1.238) which is impossible. I figured out that one problem was the "gps_ground_distance"

function whose result is used to qualify the bearing. There were two different errors in the

"gps_ground_distance" function. The distance was originally calculated by

dist = 2·arcsin(

√
cos(lata) · cos(latb) · (sin(

lona − lonb

2
))2 + (sin(

lata − latb
2

))2) (3.1)

Let me explain the problem considering as example the two positions a and b from the testing

on the golf course on jan/11/2005 in dd.mmmmmm (alat) and in radian (lata):

alat = 43.428442◦ ⇒ lata = 0.76295445 rad

blat = 43.428420◦ ⇒ latb = 0.76295381 rad

alon = 72.170198◦ ⇒ lona = 1.26158792 rad

blon = 72.170212◦ ⇒ lonb = 1.26158832 rad

3.2 Main program for autonomous navigation 31

whereas radian islata = (alat.degrees + alat.minutes/60)/180 · pi. In dynamic C the numbers

lata, etc. are defined as IEEE standard 32 bit floating points.

Figure 3.15:Precision for decimal values

The range for floats is not a problem, because the exponent is a signed integer in the range of -

126 to 127. But if there are no leading zeros, the expansion is rounded off at the 23rd digit after

the binary point. Which is equivalent to 1
4194304

or 2.38419−7 . The problem with equation3.1

is was not that it is false, but that it is not precise enough for our navigation algorithm, because

it tries to compensate for not having double precision floats. The fact was, that dynamic C does

not provide a data structure with double precision, like C++ or C. A library with a structure

with almost double precision was found(see chapter3.2.3) and I developed the formula for a

distance calculation on earth based on spherical coordinates.

For a correct calculation of a distance

Figure 3.16:Spherical coordinates

between two positions on earth, the lat-

itudes and longitudes need to be con-

verted into azimuth and pole angle. To

accomplish a range for the azimuth an-

gle (ϕ) of

−180◦ ≤ ϕ ≤ 180◦

and

−90◦ ≤ Θ ≤ 90◦

3.2 Main program for autonomous navigation 32

for the pole angle (Θ), I do the following transformations in the source code:

Θ =

−lati for direction = ‘S‘

+lati for direction = ‘N ‘

(3.2)

ϕ =

−loni for direction = ‘E‘

loni for direction = ‘W ‘

(3.3)

For latitude and longitude on earth, see figure3.1. With these transformations, every position

on earth can be described by

f :

r

lona

lata

 7→

r · cos(lona) · sin(lata)

r · sin(lona) · sin(lata)

r · cos(lata)

 =

x

y

z

 (3.4)

The angleα in radians between two positions on earth then is calculated with the scalar

product between the two position vectors:

cos(α) =

cos(lona) · sin(lata)

sin(lona) · sin(lata)

cos(lata)

 ·

cos(lonb) · sin(latb)

sin(lonb) · sin(latb)

cos(latb)

= cos(lata) · cos(latb) + sin(lata) · sin(latb) · (cos(lona) · cos(lonb) + sin(lona) · sin(lonb))

(3.5)

The angleα would be easy to calculate by

α = arccos(cos(lata) · cos(latb) + sin(lata) · sin(latb) · cos(lona − lonb)) (3.6)

, but the double precision library does not include an arccos function. So I had to convert the

arccos into something known which is the arctan in this case:

arccos(α) = arctan(
−α√
1− α2

) + 2 · arctan(1) (3.7)

3.2 Main program for autonomous navigation 33

The distance then is calculated with the angle converted to degrees and multiplied with the

distance between two degrees.

dist [km] = α [◦] · 180

π
· 111.136

[
km
◦

]
(3.8)

3.2.2 Calculation of gps bearing and off bearing

The function to calculate the bearing between two gps positions "gps_bearing" had to also be

transformed for a use with the "_double" precision structure and can be found in the gps.lib. It

returns the bearing in true degrees. I took the formula to calculate the bearing with knowledge

of the distance between two points a and b

bearing = arccos(
sin(latb)− sin(lata) · cos(dist)

sin(dist) · cos(lata)
) (3.9)

and converted it to use double precision (see chapter3.2.3). The arccos was substituted again

with equation3.7.

The navigation algorithm calculates different kinds of bearings. The initial bearing is the bear-

ing between two waypoints and marks the desired track for the CoolRobot. Initial distance and

initial bearing do not change unless the robot reaches the waypoint and heads to the next way-

point. The bearing to waypoint ("bearing_to_wp") is the bearing from the current position

of the robot to the active waypoint, same as the bearing to basing point ("bearing_to_bp") is

the bearing from the current position to the basing point. These bearings and the appropriate

distances change between two navigation cycles and are used to calculate the off bearing by

taking the difference to the current bearing ("curr_bearing"):

off_bearing =

bearing_to_wp− curr_bearing for dist_to_wp ≤ dist_to_bp

bearing_to_bp− curr_bearing for dist_to_wp > dist_to_bp

(3.10)

The range for the "off_bearing" is−180◦ ≤ x ≤ 180◦, whereas a negative value corresponds

to a left turn and a positive value to a right turn to correct the course.

3.2 Main program for autonomous navigation 34

3.2.3 Double precision floating point in dynamic C

Since the best way to tell the robot‘s heading is to take the bearing between the last two

positions while navigating, the single precision floating point is not precise enough for the

navigation algorithm. The distance can only be calculated exactly with the angle between two

points on earth, measured from geocenter(see chapter3.2.1). Dynamic C does not provide a

structure double. Robert Richter wrote a double precision library on his own. We purchased

it from him. The package included the dynamic C library, his C-code, a readme file, an ex-

ample file and an expression builder. This chapter presents the different functions used for the

navigation and the different commands, especially the syntax.

The double precision library creates a data type called "_double", which is internally defined

as structurechar Bytes[8]_double . The accuracy depends on the functions used:

Add, subtract, multiply, divide, and square root are all accurate down to the last bit. Add,

subtract, multiply, and divide all use 8 bits for rounding with 1 guard bit and 7 sticky bits.

Square root only has 5 sticky bits. The transandentals use C code and each term in the series

is rounded, so the multiplication and addition can result in two bit error each round. The

largest series is arctan with 22 terms, so a total of 44 operations can result in about 5 bits error

worst case.

Figure 3.17:Expression builder for "_double"

3.2 Main program for autonomous navigation 35

Figure3.17shows the different syntax for single float and double precision "_double". The

window shows the MFC Application to be started. The Expression builder helps to generate

source code for the new structure "_double" with the known syntax from calculations with

floats. The expression as programmed for single floats has to be entered in the "expression"

line. The expression builder has no button to create the new source code. You have to have

the "expression" line in focus and hit the enter key. The translated source code line generated

appears in the next line and can be pasted into the desired dynamic C function. The original

expression is shown after the double backslash and commented out. The variables "lata",

"latb", etc. can be defined as "_double =lata", but there are functions to convert float to

double and the other way around. The most important functions are presented here to allow

an easy user interface.

_double dpMakeNum(long Num1, long Num2): Should only be used if the source code line

is generated with the PC program. This takes two long numbers and takes the bytes in the long

numbers and combines them together for the bytes in a double precision number. It is *not*

intended to be used to convert long numbers to double

_double dpFloat2Double(float Num): Converts a floating point number to a double precision

number. Note that since computers work in base 2 and not base 10, things like 0.1 become

0.1000000014901161. This is an artifact of the base 2 representation, I fill in the missing

second byte with zero’s, but the zero’s in base 2 are not zero’s in base 10.

float dpDouble2Float(_double Num): Converts a double precision number back to floating

point. This doesn’t round, so the last bit may be in error.

_double dpAdd(_double Num1, _doubleNum2): Adds two numbers and rounds the final

result. Issues with +/- infinity in the IEEE 754 format are not supported. Also, zero+very small

numbers (around1e − 300) will cause zero to not quite be zero and may result in something

like 1.2e− 300. For numbers that aren’t at the extremes, however, zero is zero.

_double dpSub(_double Num1, _doubleNum2): returnsNum1−Num2.

_double dpNeg(_double Num): Changes the sign of a number

3.2 Main program for autonomous navigation 36

_double dpMul(_double Num1, _double Num2): Multiplies and roundsNum1 ∗Num2

_double dpDiv(_double Num1, _double Num2): ReturnsNum1/Num2

_double dpSqrt(_double Num): Returns the square root.

_double dpSine(_double Angle): Sine of angle in radians.

_double dpCosine(_double Angle): Cosine of angle in radians.

_double dpArctan(_double Angle): Arc tangent in radians.

Let me just give a small example of using the structure "_double":

main(){
_double a, b, c, d, e;
float print;

e = dpMul(dpAdd(a, b), dpAdd(c, d));//e = (a + b) ∗ (c + d)

print = dpDouble2Float(e);
printf("result of the _double calculation is: %f", print);

}

Table 3.4:Sample using structure _double.

This example ought to show the use of the double precision structure which is not supported

by dynamic C and is not known to dynamic C as a data type such as float or integer. Variables

of "_double" can be defined and used for calculations with the listed and in the "doublepre-

cision.lib" library written functions. If the user wants to display a number on the screen or

transmit a number to a function not listed in the doubleprecision library he has to convert the

number to a data type known to dynamic C (chapter3.4).

3.3 Analog sensors 37

3.3 Analog sensors

3.3.1 Power and signal supplies and setup for the ADC evaluation board

The Analog Devices evaluation board eval-AD7490cb is used to read analog signals. The

AD7490 is a 16 channel, 12-bit Analog to Digital Converter. The first ADC MAX1231 from

Maxim was replaced, because we had problems with the temperature rating for their evalu-

ation board. Any attempt to adapt the cold temperature rated ADC MAX1230, which is the

5V version of the 3.3V MAX1231 failed and support from Maxim was lacking. The second

reason for the AD7490 was that it is able to read bipolar signals that are biased at 2.5V. The

Maxim part could only read 8 bipolar channels, because it takes true differential readings from

two channels. The requirements for a Analog to Digital Converter for our project were not as

simple as evidently. The first and most important fact was the cold temperature rating of down

to -40◦C. The box of the Cool Robot is insulated and the heat of the motor controllers should

keep the temperature always above ambient temperature, but this is the maximum rating. The

main logic is driven by two microcontrollers, one Mastercontroller for the navigation and con-

trol and one Slavecontroller for the power management, which is the work of Alex Streeter´s

master thesis. For the navigation and control side, the following analog sensors must be read:

channel signal input range

1 motor current A −2V ≤ Vout ≤ +2V

2 motor current B −2V ≤ Vout ≤ +2V

3 motor current C −2V ≤ Vout ≤ +2V

4 motor current D −2V ≤ Vout ≤ +2V

5 motor velocity A −1.5V ≤ Vout ≤ +1.5V

6 motor velocity B −1.5V ≤ Vout ≤ +1.5V

7 motor velocity C −1.5V ≤ Vout ≤ +1.5V

8 motor velocity D −1.5V ≤ Vout ≤ +1.5V

9 tilt sensor roll +1.5V ≤ Vout ≤ +3.5V

10 tilt sensor pitch +1.5V ≤ Vout ≤ +3.5V

Table 3.5:Analog input channels.

Most analog to digital converters are not able to handle negative input voltages. So we centered

3.3 Analog sensors 38

the output at 2.5V and generated a bipolar input from0.5V ≤ Vin ≤ 4.5V . The AD7490 is

able to change the input range from 0 toVref to 0 to2 · Vref , where the reference voltage of

Vref = 2.5V is provided from an on-board high precision reference. The only problem was

that Analog Devices started the production of their evaluation board in February.

The power and signal supply for the ADC and the DAC is made through a 20 wire ribbon

cable (Table3.6).

1 GND (DAC) DC-DC board

2 +10V (DAC) DC-DC board

3 SDI (DAC) PC0

4 -5V (DAC) DC-DC board

5 CS (DAC) PB2

6 CLKD (DAC) PF0

9 VREF (+5V) rabbit eval. board

16 GND (ADC) DC-DC board

17 CS (ADC) PD0

18 CLKB (ADC) PB0

19 DIN (ADC) PC4

20 DOUT (ADC) PC5

Table 3.6:ADC / DAC ribbon cable.

The on-board components of evaluation board include a programmable ultra high precision

bandgap reference and four ADG467G quad op-amps which are used to buffer the sixteen

analog input channels.

The AD7490 evaluation board is build to be used with the Eval-board controller from Analog

Devices. When using it with the Eval-board controller, all supplies are provided through the

96 way connector. When using the evaluation board as a stand alone unit, the external supplies

must be provided to the alternate pins. For connections of power supplies that are provided to

the board for interfacing the Jackrabbit microcontroller on serial port B see Table3.7.

For using the evaluation board as a stand alone unit, +5V must be connected toVDD to sup-

ply the AD7490 and the on-board high precision reference. If interfacing the board with 3V

systems, +3V can be connected to theVdrive pin. Usually the supply voltages for the op-amps

3.3 Analog sensors 39

digital supply voltageVDD J7

digital groundDGND J7

analog supply voltageAVDD J2

analog groundAGND J2

positive op-amp voltage +10V J3

negative op-amp voltage -5V J3

Table 3.7:EVAL-AD7490CB power supplies.

are±12V , but the supplied voltages of -5V and +10V availablefrom the housekeeping power

distribution board on the robot are within the desired range of−18V ≤ Vneg ≤ −4.5V and

+4.5V ≤ Vpos ≤ +18V . The evaluation board has 19 switch and 19 link options to adjust

the desired functions. For operation with the Jackrabbit microcontroller the switches and links

have to be set as shown in Table3.8.

Link No. Function

LK0-LK15 Adds a 50. termination to AGND at the Ain0 to Ain15 sockets

(left unconnected).

S0-S15 Allows to user to connect a particular AD713 op-amp input to ground (H)

LK16 In position "C" an external VDRIVE supply voltage must be supplied via J7.

LK17 In position "A", the AD780 provides the 2.5V reference to the AD7490.

LK18 Adds a 50. termination to AGND at the Vin input to the Bias up circuit

(unconnected).

LK19 This link option selects the source of the SCLK input.

S17 In position J2, the +12V is supplied from an external source via connector J3.

S18 In position J3, the -12V is supplied from an external source via connector J3.

S19 In position J2, the AVDD is supplied from an external source via connector J2.

Table 3.8:Switch and link options on EVAL-AD7490CB.

3.3.2 12-bit, 16 channel Analog to Digital Converter on serial port B

When setup as described in chapter3.3.1, the AD7490 can be accessed trough serial port B

using SPI.

3.3 Analog sensors 40

SPI is a three or four wire connection to shift data between two parts like a microcontroller

and an analog to digital converter. There are two connections for data input and data output

and then one for chip select and one for the serial clock. A data word transmission is started

by generating a falling edge on the chip select lineCS. The following defined number of bits

are send with the falling edge of the serial clock SCLK. After the transmission,CS is pulled

high again to end the data word. Figure3.18shows an example conversion request on serial

port B.

Figure 3.18:Sample SPI communication on serial port B

Channel 1 is PC4, the serial data output of the jackrabbits serial port B sending two 16-bit

data words and channel 2 is theCS being pulled low for the transmission. Logic one is 3.3 V

and low is 0 V.

The problem here was, that the microcontroller has four SPI ports, A, B, C and D but dynamic

C only provides SPI library code for the use of one SPI port at a time. The desired serial port

has to be enabled to transmit data, and with the use of the SPI functions it is not possible to

enable more than one serial port. There is the possibilty to change the definition of the SPI port

in the function, but the DAC needs a logic high all the time not to update the output value.

If the SPI port would be changed to serial port B instead of serial port D for the DAC, the

output for all four motors would change to -2.9 V which is equal to a motor speed of -100%.

3.3 Analog sensors 41

So I had to rewrite the SPI.lib library into a library called SPI_B.lib to make a simultaneous

use of two serial ports possible. It uses the same code but only renamed functions for writing

to or reading from a serial port (see TableA.1in App.A). For taking readings from the ADC,

the function to write and read data is SPI_BWrRd(command, data, 2). The original SPI.lib is

used to interface the DAC to control the brushless dc motors through serial port D.

The AD7490 is a 16 channel, 12-bit analog to digital converter with up to 1MSPS(Mega Sam-

ples Per Second) and a 12-bit control register. The control register is a write-only register

with the MSB(Most Significant Bit) transferred first. For the data in the control register being

transferred on the DIN line at the same time, the conversion result is send out on the DOUT

line to the Jackrabbit each control register change is valid from the next conversion only. As

every conversion result is a 16-bit data word, it takes 16 serial clock cycles to load the new

12-bit control register data. The 12 control bits are followed by 4 zeros, but only the first 12

bits are loaded to the control register. Figure3.19shows the structure of the 12-bit data word

loaded to the control register.

Figure 3.19:12-bit Control register sectioning

Write : The Write bit has to be set to 1 to load the following 11 bit to the control register. If

set to 0 the register remains unchanged.

SEQ, Shadow: The SEQ and the Shadow bits select one of the four modes of operation of the

sequencer. If set to 00, the sequence function is not used and only a conversion on the selected

channel is made.

ADD3-ADD0: The four address bits are used to select a channel for the conversion. The four

bit word corresponds to the decimal number of the channel (1-16).

PM1, PM0: These two bits select the power mode for the ADC. In normal operation mode

3.3 Analog sensors 42

they are set to 11. The ADC runs fully powered and allows the fastest conversion rate.

Weak/TRI: Selects the state of DOUT after the conversion. For SPI interface this bit is set to

0 and DOUT will return to three-state at the end of the conversion.

Range: The Range bit selects between two analog input ranges:0 ≤ Vin ≤ Vref if set to 1 or

0 ≤ Vin ≤ 2 · Vref if set to 0. If the input range of up to2 · Vref is selected, the digital supply

voltage must be 5 V!

Coding: Selects the output format for the 12-bit conversion result. If set to 1, the format will

be straight binary and if set to 0, the result will be returned in twos complement.

Figure 3.20:Straight binary vs. twos complement output format

These two different output formats have a different transfer characteristic for the output value

only. An analog voltage on one of the 16 channels is transferred into a 12 bit integer (0...4095).

Therefor in both cases, the full scale input range of either 0V ..Vref or 0V ..2 ·Vref is divided

into 4096 steps. One step is the LSB which has a value of1LSB =
Vref

4096
or 1LSB =

2·Vref

4096

depending on the input range. With a 2.5 V reference voltage the LSB has a value of 0.00061V

or 0.0012V, which is the maximum error from the real analog input. The output integer is given

by code = Vin

1LSB
for straight binary output (Figure3.20). Straight binary output is used for

single ended unipolar signals, but the motor current and the motor velocity output signals are

bipolar, depending on the sense of direction.

3.3 Analog sensors 43

Figure 3.21:Circuit to bias bipolar signals about Vref

As the analog to digital converter cannot handle negative inputs, the signals have to be biased

aboutVref . The negative full scale -2.5V is 0V and the positive full scale +2.5V is +5V. A

general circuit to bias up a bipolar input at about 2.5 volts is given in Figure3.21. The analog

input conditioning circuit we use in our case is presented in AppendixC.

Figure 3.22:ADC DIN and DOUT with analog input signal

The DOUT line of the AD7490 shifts a 16-bit data word to the serial port B. The first four bits

indicate the information on the channel on which the conversion was requested. The next 12

bits are the digital value of the analog input voltage. The SPI port reads the 16-bit data word

3.3 Analog sensors 44

as two complete bytes which are shifted into a two dimensional character array "data[2]". A

bitwise "and" is performed with the first byte and "0F" to extract the four address bits:

0000 1111 & 0101 0011 = 0000 0011 (3.11)

The first four bits of the digital conversion result remain unchanged. At first, I thought about

programming a checksum for the address bits, to guarantee a reading on the correct channel,

but then decided to keep it simple and the communication through the serial port is correct.

3.3.3 Dual axis accelerometer used as a tilt sensor

The dual axis tilt sensor is a dual-axis accelerometer "ADXL203" from Analog Devices. The

ADXL203 measures acceleration with a full-scale range of±1.7g. The ADXL203 can be

either used to measure dynamic or static acceleration(e.g.,gravity). By mounting different

capacitorsCx andCyto theXout andYout pins, the user selects a bandwith between 0.5 Hz and

2.5 kHz of the accelerometers. The part is temperature rated from -40◦C to +125◦C. With a 5V

supply voltage, the accelerometers have a sensitivity of1000mV
g

. The five extremal positions

are listed and shown below.

x1 = 2.5V ; y1 = 2.5V ; x2 = 2.5V ; y2 = 1.5V

x1 = 3.5V ; y1 = 2.5V ; x2 = 1.5V ; y2 = 2.5V

3.3 Analog sensors 45

x1 = 1.5V ; y1 = 2.5V ; x2 = 3.5V ; y2 = 2.5V

x1 = 2.5V ; y1 = 3.5V ; x2 = 2.5V ; y2 = 2.5V

x1 = 2.5V ; y1 = 1.5V ; x2 = 2.5V ; y2 = 2.5V

The accelerometers are used for the CoolRobot to detect a maximum pitch or roll angle to

prevent it from tipping over if driving while climbing large sastrugi features. An accelerometer

has a varying sensitivity in the range of -1g to +1g. The output changes with nearly17.5 mg
◦tilt

when the accelerometer is perpendicular to gravity but the resolution decreases and the output

changes at only12.2 mg
◦tilt

at 45◦. The analog output voltageVout : 1.5V ≤ Vout ≤ 3.5V is

converted to a range between−1V ≤ xout ≤ +1V in the function "read_sensors()" written in

the "analogin.lib" library. With1V ⇔ 1g the output tilt in degrees can be calculated as

pitch = arcsin(xout

1g
) (3.12)

roll = arcsin(yout

1g
) (3.13)

3.3 Analog sensors 46

One thing to keep in mind is, that both outputs can exceed the output range of -1V to +1V due

to vibration or shocks by falling down a steep and sharp edge of a snow feature. To prevent

a domain error when trying to calculate thearcsin(x) for x > 1, I round the output ranges

off to 1 if they are larger. At 45◦ tilt, which is the stalling anglexout or yout has a output

of≈ 0.707V , defined as the critical tilt value (see chapter3.3.6). To reduce the influence of

vibrations on the outputsxout andyout of the tilt sensors, a2nd order Butterworth Filter acting

as a lowpass is integrated in the circuit. The bandwidth then is given by

BW (Hz) =
1

2 · π ·
√

2 ·R · C
(3.14)

with R = 22kΩ andC = 0.1µF , we have a bandwidth of 51 Hz. At frequencies higher

than 51 Hz, the attenuation is−40 dB
dec

. The specific feature of a Butterworth Filter is, that it

has only one cut-off frequency.

3.3.4 Motor current and motor velocity sensors

Eyes and ears of the Cool Robot, that is a good transcription for the analog sensors and es-

pecially for the motor currents and the motor velocities. The Cool Robot is powering all four

motors in velocity mode. The AMC brushless servo amplifiers try to keep the motors at the

desired revolutions by increasing the current draw for each motor if it has to provide more

torque. In reality, it is not possible to keep the revolutions at the exact same level. If the Cool

Robot climbs a sastrugi feature for example, not all wheels will reach the inclination at the

same time and one wheel has to produce more torque than the others. As a result, the current

draw for that motor increases to keep the revolution up. Meanwhile the revolutions for that

wheel drop a little and not seeing the Cool Robot or the feature that is faced, one can easily

guess what the current terrain looks like. The other way around the motor current and motor

velocity sensor for one wheel can also detect a wheel not in contact with the snow. The Cool

Robot will be confrontated with driving with one wheel in the air frequently, so that this will

not be an extreme case. But we want to be able to tell if the Cool Robot is high centered on

a large sastrugi feature or a very firm accumulation of snow with two or more wheels not in

contact with the snow.

Another reason for the motor current sensors is the very firm energy budget. The Cool Robot

3.3 Analog sensors 47

is powered by solar energy, which is a very constant and stable energy source when the sun

is shining. There will never be "too much" energy and if there is a surplus of power, then it is

nice to know for the next generation of Cool Robots. Logging the motor currents gives a very

important and highly interesting information on rolling resistance on the snow in Antarctica

and will be useful for further expeditions.

Both sensors are provided by the AMC brushless servo amplifier on the connector P1. The

current monitor output is connected to pin8 and the velocity monitor output is conncted to

pin15. The current monitor output is a voltage scaled by the factor two for each ampere cur-

rent draw (1V = 2A). A positive voltage tells the user that the dc brushless motor is turning

clockwise and a negative voltage counter clockwise. The current monitor output is always

within a range of−2V ≤ Vcurr ≤ +2V due to the set current limit of the motors.

Figure 3.23:Velocity monitor out vs. motor revolution

The velocity monitor output is a periodic voltage with a rising offset for an increasing rev-

olution. The output scales with 1V per 120 Hz Hall frequency. At a maximum revolution of

5000rpm and a number of four poles, the maximum velocity monitor output voltage is:

Vvel =
5000rpm

120Hz · 60sec
· 2 · 1V = 1.388V (3.15)

3.3.5 Function to process the sensor data

It is one part to adjust the range for an analog signal, to build the conditioning circuits and

make the correct connections. But reading out the analog to digital converters output is an-

other. This section describes the data processing from the 12 bit integer value to the corre-

3.3 Analog sensors 48

sponding output voltage or current. The target is to have an output value which is comparable

to a multimeter. Each signal has an input range from 0V to +5V because each analog sensor

is connected to the conditioning board. But the different functions of the sensors have to be

scaled differently to get the desired output.

The analog sensor readings are programmed in the function "read_sensors()" in the analo-

gin.lib. The 16 output channels are read with the function "ReadAD". The 12 bit return value

is an integer between 0 and 4095. Each integer corresponds to a voltage or current. By mul-

tiplying with a scale factor, each output can be adjusted separately. Each scale factor has to

convert the integer to the chosen input range for the ADC of 5V byvoltage = output [i]· 5
4096

. Then each scale factor for the analog sensor‘s output has to be multiplied. For the motor cur-

rent that is 2, because the output is 1V for 2amp motor current. The motor velocity output is

1V for 120Hz Hall frequency and the tilt output is 1V for 1g. The final output values are given

below.

motor current [A]

motor velocity [RPM]

tilt angle [◦]

=

=

=

5
4096

· 2 · intvalue [A]

5
4096

· 120·60
2

· intvalue [RPM]

5
4096

· intvalue [◦]

(3.16)

Used in the interrupt function are the output[0] to output[3] for the motor currents, output[4]

to output[7] for the motor velocities and output[8] and output[9] for the tilt pitch and roll.

3.3.6 Sensor interrupts

One of the two different interrupts in the drive mode "wp_follow_full" and "wp_follow_partial"

are the sensor interrupts. A sensor interrupt is a jump out of the current drive mode to the

manual operator mode or the high centered drive mode for example. A sensor interrupt is pro-

duced, when the range of a sensor is exceeded and the mobility of the Cool Robot is no longer

guaranteed.

3.3 Analog sensors 49

The sensors of the robot are its eyes and all the senses it has. Two different functions are

programed for the "sensor range" handling:

1) sensor_high_centered(int *tm_hc, int *wheel_air)

2) sensor_range()

Table 3.9:Sensor range handling functions.

Every sensor is read once every second. The tilt sensors for roll and pitch are compared to

a limit of the value of "tilt_lim". If the absolute value for one of the tilt sensors exceeds 45◦

degrees for example, the function stops the robot. A routine to drive the robot back on the

driven track is called. The motor speeds are set to backwards 100%. After 4 seconds, it makes

a right turn with 90% speed compared to 100% for 18 seconds which is equal to a 60 degrees

turn. After that the robot will stop and continue with navigating at the desired speed. If called

from drive mode "wp_follow_full" (drive_mode = 1) the motor speeds are set to 100% and if

called from "wp_follow_partial" (drive_mode = 2) the motor speeds are set to 60%.

Figure 3.24:High tilt angle interrupt handling sample

Figure3.24shows the track of a high tilt angle interrupt. After the motor speeds have been set

to the speed before interrupted the navigation algorithm will start over again.

The second function checked once every second, is detecting a high centered position. In case

3.3 Analog sensors 50

of one wheel being without contact to the snow, the current will drop to the no-load-current

value. The motor velocity will increase a little to almost the maximum revolutions. That only

is not a criterion to detect a high centered position, because the Cool Robot will travel with

only three wheels in contact to the snow repeatedly. What I am doing is, i check all four wheels

once every second for a current value that is close to the no-load current value. If that is the

case, I check the motor velocity as well. If the motor velocity is above 4950 rpm , I log the

tilt angles. The number of the wheel is stored and this wheel is checked again after a second.

If the current is still low and the revolutions at a high level, the tilt angles are read out and

compared to the first reading. After 10 readings of a very low current, a high speed and almost

no difference in the tilt angles the drive mode "high_centered" is called. In the case that the

current for the selected wheel increases to the next second, the algorithm recognizes that and

all four wheels are checked again. The drive mode "high_centered" is not implemented yet. It

is very hard to tell the best way how to get back enough propulsion for further movement. That

has to be a part for the next students. The time the robot waits after defining a high centered

position is set to 10 seconds but can be adjusted by "tm_hc".

51

Chapter 4

The overall control unit

The overall control unit of Cool Robot is one main part of the robot’s logic. It consist of the

Digital Analog Converter TLV5614, four Advanced Motion Controls brushless servo ampli-

fier AMC BE15A8-H and EAD brushless dc-motors EAD DA23gbb-m300. The control unit

basically consists of the different drive modes for the Cool Robot. A drive mode calls the

navigation algorithm, checks the sensors, and listens for manual interrupts incoming through

the user interface radio or iridium modem. Depending on the drive mode the propulsion has

to be assured. Each drive mode checks the motor_speeds at frequent intervals and if needed

updates the DAC‘s output. The motor controllers are supplied with 48 Volts, as well as the mo-

tors themselves. The speed of each motor is controlled with the DAC‘s output. This chapter

will explain the design and construction of the DAC setup together with the motor controller.

The DAC is connected to serial port D. Table4.1 shows all serial port connections on the

jackrabbit.

serial port: function
A programing and compiling port
B analog to digital converter AD7490
C GPS-receiver Motorola Oncore M12+
D digital to analog controller TLV5614
E radio modem
F iridium modem

Table 4.1:Serial port connections and functions for RCM.

4.1 Navigation and control mode overview 52

4.1 Navigation and control mode overview

Table 4.2 summarizes the navigation and control modes assumed for the robot.

wp_follow_full The Cool Robot drives at the top speed of1.2 m
sec

and navigates au-

tonomously to follow the given waypoints and the generated basing

points. The GPS-receiver is set to output the NMEA-GPRMC mes-

sage once every second. The robot will parse its position once every

30 seconds after achieving the last course correction to calculate the

current bearing and the next off bearing. While traveling, the analog

sensors are read once every second. The wheel speeds and motor cur-

rents are compared to detect a high centering position and switch to

the drive mode "got_stuck". The tilt sensors are also interrupt driven

to prevent the robot from tipping over.

wp_follow_partial The same routines as in the drive mode "wp_follow_full" are run,

except that the robot travels with a speed of 60%.

manual_operator The Cool Robot is not navigating autonomously. The GPS-data

string send out to the serial port and the motor speed command to

the DAC in percent are send back to the radio modem connected to

the Laptop and are displayed in the "HyperTerminal" window. The

robot can be controled with the keypads:

w (10% motor speed increment)

s (10% motor speed reduction

a (left turn with 10% difference in motor speeds left to right)

d (right turn with 10% difference in motor speeds right to left)

q (stop: decreases all motor speeds to zero within 1 second)

p (switch to wp_follow_full: motor speeds set to zero!)

high_centered This drive mode is accessed, when the wheel speed sensors and the

motor currents create the interrupt in one of the waypoint following

drive modes.The Cool Robot tries to get all four wheels back in con-

tact with snow. This routine has to be evaluated during the testing in

Greenland.

4.2 12 bit Voltage output DAC with serial interface 53

charge cycle The navigation is reduced to parsing the GPS Position from the

GPS-data string. The motor controller are shut down and the power

consumption is reduced to a minimum. Accessed by the Slave con-

troller maintaining the power overall power supply as a part of Alex

Streeter‘s master thesis.

high_wind The robot is turned with one corner facing the wind. Energy con-

sumption is reduced to minimum in case of a blizzard. Movement of

twice the length of the robot once in a while to prevent snowing in.

Not implemented at this time.

stat_get_data The drive mode in which the robot mainly does nothing. The largest

part of the bandwidth is reserved for the payload data transmission.

Table 4.2:Control and drive mode overview

The main control algorithm for the Cool Robot is split into different drive modes. A drive

mode is the summarization of the basic functions needed to handle the current situation. As

the circumstances change during the robot‘s trip, the priority for each algorithm changes.

The main active program on the Master controller maintains the connection to either the radio

modem or the iridium modem (see chapter5) and also changes the drive modes if needed (see

chapter4.4). More drive modes are designated but not implemented yet, because the needs for

the scientific payload are not specified and the wind speed sensor is not implemented yet (see

chapter4.4).

4.2 12 bit Voltage output DAC with serial interface

Selected for our drive train was a Digital to Analog Converter from Texas Instruments, because

they had the best support with their package. The digital supply voltage is separated from the

analog side and can be varied between 2.7V and 5.5V. The TLV5614 has 4 DAC´s with a

resolution of 12 bit and an output voltage. A 12 bit resolution says, that a voltage range, here

4.2 12 bit Voltage output DAC with serial interface 54

the output voltage is divided into212 = 4096 steps.

The smallest part each voltage step differs from

Figure 4.1: SPI Interface

the next is the LSB(Least Significant Bit)= 1
4096

·

(voltagerange). Supply voltage for the part is±

5V. VREF is set to 10 V. The DAC is connected

to serial port D on the Jackrabbit main controller

(for connections refer to Table3.6). The four DAC‘s

are easily accessable through a 3 wire serial inter-

face (SPI) using the provided code for the SPI.lib.

If there is only one device connected to the serial

port,CS can be tied low. The maximum serial clock frequency for the TLV5614 is 20 MHz.

The FS pin is the Frame sync input pin. A falling edge has to be generated on this pin to shift

the data in the serial output to the DAC, where the minimum high-level digital input voltage

for DVDD =5V is 2.2 V and the maximum low-level is 0.9 V . The falling edge on FS starts

shifting the 16-bit data word, with the MSB(Most Significant Bit) first to the internal register

of the DAC clocked by the 16 falling edges of the serial clock. After FS rises or the sixteen bits

have been shifted, the addressed DAC updates the output. The data consists of four control or

address bits followed by the 12-bit DAC value. DACA, which is addressed by 0000, controls

the output voltage for motor A for example (see the drive.lib header for all address bits).

Figure 4.2: DAC 16-bit data word

Each DAC‘s output voltage then is represented by

Vout = 2 · Vref ·
DAC value

4096
[V] (4.1)

whereVref = 2.5V in our case and the DAC value the 12-bit data word to be transfered in a

range from0 ≤ x ≤ 4095 is. The reference voltage can be adjusted from0V ≤ Vref ≤ 3.3V

4.3 AMC brushless servo amplifier and EAD brushless dc motors 55

with the potentiometer on the DAC board. To buffer the DAC‘s ouput signals, we connected

an Opamp LM248 to the output channels.

The final output voltage range is outlined in Figure4.3.

Figure 4.3: Voltage output vs. digital input

4.3 AMC brushless servo amplifier and EAD brushless dc

motors

The motor controllers are PWM (Pulse Width Modulation) servo amplifiers of the model

AMC BE15A8-H. Supplied with 48V, the amplifier can be interfaced with a digital controller

or used as a stand alone unit. The amplifier is controlled by the quad voltage output DAC from

Analog Devices. Various switches and potentiometers allow the user to adapt the amplifier to

the existing system and to synchronize the four amplifiers.

The four switches are set up for velocity mode with the parameters to adjust with the poten-

tiometers.

The function of the four 14-cycle potentiometers are outlined below:

Pot 1: This potentiometer adjusts the loop gain in velocity mode. The loop gain increases

while turning clockwise. For the Cool Robot it is turned fully clockwise.

4.3 AMC brushless servo amplifier and EAD brushless dc motors 56

Pot 2: This potentiometer adjusts the current limit. Both continuous and peak current can be

adjusted up to the maximum ratings of 7.5A for the continuous current and 15A for the peak

current. The peak current limit is always double the continuous limit and at maximum when

fully clockwise

Pot 3: This potentiometer adjusts the reference gain. This means the ratio between input volt-

age from the DAC and output velocity is increased by turning the potentiometer clockwise.

Not every amplifier is turned fully clockwise for the Cool Robot, because due to production

differences or load differences the general reference gain limits are not at the same level.

Pot 4: This potentiometer adjusts the offset for the input signal and is used to offset any

imbalance in the input signal or in the amplifier. It is important that DIP switch 4 is in position

"Off" or offset.

The potentiometers are set to produce a maximum revolution of 5000 rpm with a±3V input

voltage from the DAC‘s. To assure that all four wheels are at the same revolution speed at

the different speeds, the motor controller with the lowest reference gain at full speed has to

be taken as a reference. The offset potentiometer has to be turned so that all motors start

turning at the same input voltage in both directions. Due to static friction, roughly 20% of

input voltage must be commanded before the motors start turning. Then the reference gain for

each motor has to be adjusted at full speed in both directions to the reference wheel. Only this

guarantees a perfect straight track for the Cool Robot (Figure4.4).

Figure 4.4: Motor revolutions vs. input voltage

4.4 The different drive modes of Cool Robot 57

As shown in Figure4.4the output voltage is not linear to the wheel speed. The drawing on the

right side shows how the motor speed behaves compared to the input voltage provided from

the DAC.

The brushless dc motors DA23-DBB-M300 from EAD-Motors are mounted to the gearhead

with a 100:1 ratio. A maximum revolution after the gearhead of 50 rpm and a tire diameter of

20 inch provides a top speed of

Vmax =
50rpm

60sec
· 2 · π · 10inch · 2.54m

100
= 1.33

m

s
(4.2)

4.4 The different drive modes of Cool Robot

On the trip over the Antarctic Plateau the Cool Robot has to face many different situations.

Some algorithms and functions have a different priority during the trip. The best example is

the navigation algorithm. Most of the time the Cool Robot will be following waypoints on

the Antarctic Plateau, but if the power budget runs low the robot has to stop to recharge the

li-ion batteries. Once standing at one position without driving the motors, there is no use of

calculating distances and bearings. The navigation algorithm can be "shut down". To meet

the different requirements, drive modes for the Cool Robot are implemented. A drive mode

grades and arranges the different base functions used to read the sensors, to control the motors

or to navigate for example. A detailed overview over the Cool Robot‘s drive modes is given

in Table 4.2.

The drive modes and a general description are listed below.

wp_follow_full() : In the drive mode "waypoint following at full speed" the robot travels at

1.3 m
sec

on the calculated track to the next active waypoint. High energy consumption.

wp_follow_partial() : Called from the drive mode "waypoint following at full speed" when the

Slave microcontroller sets a power limit which forces the motors to run slower. Still heading

to the waypoint.

manual_operator(in_string): Designed to have easy manual control over the robot to drive

4.4 The different drive modes of Cool Robot 58

it into a garage instead of carrying it. Highest priority and interrupt driven in all other drive

modes. Control via keypad (w-faster, a-left, s-slower, d-right, q-stop).

high_centered(in_string): Detected and called by the motor current and motor velocity sen-

sors if the Cool Robot is high centered. A routine that turns the wheels forward, backward,

turns left at -100% and +100% to get the Cool Robot unstuck again.

charge_cycle(): Accessed only from the drive mode "wp_follow_partial" if the power budget

allows no further propulsion. Parameters have not been selected at this point and need to be

set by the Slave microcontroller appropriate for the energy consumption.

high_wind(): A drive mode that has to be implemented once the wind speed sensor is attached.

Will turn the robot into the direction of the wind at high speeds (≥ 20 m
sec

. Should prevent the

robot from tipping over because it is facing the wind from the side or being tilted at one corner

so that the wind is able to get under the robot. Should also move the robot a few meters to

prevent it from getting snowed in.

stat_get_data(): The Cool Robot has a scientific assignment. To take measurements it has to

stay on one position. In that case the bigger part of the bandwidth of the iridium communica-

tion is reserved for the payload for example.

4.4 The different drive modes of Cool Robot 59

4.4.1 Waypoint following at full speed

The drive mode "wp_follow_full" is the main drive mode for the Cool Robot. In the best case,

the Cool Robot only exits this drive mode for stationary data acquisition. Unfortunately there

are factors which force the Cool Robot to exit that drive mode. On the Antarctic Plateau very

high wind speeds are not uncommon. In that case the robot wants to take a position in which

one edge faces the direction of the wind to provide the smallest working surface. One other

reason for switching to a different drive mode such as waypoint following at partial speed

could be a power limit. However, the Cool robot starts in drive mode waypoint following at

full speed after powering up in manual drive mode.

Figure 4.5: Flowchart of drive mode waypoint following at full speed

4.4 The different drive modes of Cool Robot 60

I wanted to keep the structure for the drive modes simple and easy, so that the next users are

able to add drive modes that have to meet different restrictions using the basic functions. The

basic functions are summarized in TableA.1(App.A).

Figure 4.6: Screen shot of dynamic C code for waypoint following at full speed

Figure4.6shows a screenshot of the function "wp_follow_full" which is written in the drive.lib

is called directly from the main program. Once called it is executed in an endless loop if not

interrupted. Two kinds of interrupts are build in, interrupts driven by the main program, e.g.,

the interrupt to switch to manual operator drive mode and interrupts driven by the analog sen-

sors, e.g., a tilt angle higher than 45 degrees. For interrupts from main program, see chapter

5.3.4. and for interrupts from the analog sensors see chapter3.3.6. The structure of costate

tries to imitate multi tasking. The first costate is executed but the stops at the function "De-

layMs" which prevents further execution of the costate until the time listed in milli seconds

has elapsed. If not, the second costate is executed and so on. Once running, the three costates

produce a time delay for an execution of the commands listed behind each costate. In this case,

the GPS-data string from the Motorola GPS-receiver is read, the motor speeds are checked if

at full speed and the analog inputs are read once every two seconds. The interrupts for high tilt

or a high centered position are checked once every second. Then, after the defined navigation

cycle time "tm_nav" (30 seconds) has elapsed, the navigation algorithm is called. The robot

will now parse its current position, correct the course if necessary and will return back to the

4.4 The different drive modes of Cool Robot 61

main loop after that.

The drive mode "wp_follow_full" sets the paramaters for the navigation based on GPS-data.

It defines the distance between two navigation cycles which has to be aligned with the desired

precision, the available GPS-precision and the distances to travel. If the robot navigates once

every 10 seconds it will make a lot of course corrections and the track will look like a sawtooth.

If the time between two navigation cycles is larger then 30 seconds for example, the algorithm

will smooth the track by taking shifts in bearing caused by the terrain into account.

The drive mode also includes the only obstacle avoidance of the robot: high tilt angles. The ter-

rain in the Antarctica is mostly flat and obstacles like mountains or crevasses can be detected

on satellite images. The waypoints given to the Cool Robot force it to avoid these obstacles.

The sastrugies sculpted by the wind have to be handled. Therefor we have the tilt sensors. The

slow speed of the robot allows us to stop it, back it up and drive around the feature if it would

be dangerous to climb it.

During waypoint following at full speed, the robot checks the tilt angles , the motor speeds and

the motor velocities once every second. If one of them is out of the range, the robot is stopped

and the drive mode is changed. After driving around a high tilt angle or after getting out of a

high centered position, the robot will start the drive mode "wp_follow_full" again. The same

routine as described for the startup is executed to get back on the defined track (chapter3.2).

During the whole time the robot is driving in "wp_follow_full" it can be interrupted and

switched to the drive mode "manual_operator" by sending the command "$CRCMDMANDM"

from the modem (chapter5.3.4).

4.4.2 Waypoint following at partial speed

The drive mode "wp_follow_partial" is implemented to guarantee a movement if the energy

budget does not allow to drive the motors at full speed. The motors are driven at 60% of the

maximum speed which is equal to a speed of0.78 m
sec

. The drive mode will be called by a

routine from the Slave microcontroller which handles the overall energy consuption and bud-

4.4 The different drive modes of Cool Robot 62

get. The main algorithm is the same as described in chapter4.4.1. The difference to waypoint

following at full speed is, that the time between the navigation cycles is defined for two dif-

ferent situations. If the drive mode is accessed through power restrictions, the navigation time

is set with "tm_nav_low" which is longer than in waypoint following at full speed, because

the robot needs more time to travel the same distance. The same shape of the track should

be achieved. To have the same distance between current position[1] and current position[2],

"tm_nav_low" is calculated automatically to

tmnav low [sec] = 1.67 · tmnav [sec]

The drive mode "wp_follow_partial" is also accessed if the Cool Robot reaches the last way-

point within a certain distance. Then the robot is slowed down and the time between two

navigation cycles is short to allow the robot to get very close to the waypoint. If navigating

with full speed, the distance between two navigation cycles is greater than 30 m. That makes

it hard or impossible to reach a certain point within a range of 10 m. So the robot changes

to partial speed once within a range of 100 m of the last active waypoint in the list. The time

between two navigation cycles is set in "tm_nav_wp" and set to 10 seconds.

4.4.3 Manual Operator

The drive mode "manual_operator" gives the user the ability to control the robot manually

with the keypad of a laptop or computer with radio connection within a range of 1.2 km (0.78

miles). Is implemented to be able to drive the robot out of a garage for testing or any other

purposes. The functions for the manual control are written in the drive.lib. They split the range

of negative full speed to positive full speed into 20 steps. Every hit on the keypad is equal to

a 10% change of the motor speeds. The robot is accessed with the five keys w, a, s ,d, q.

w: All four motor speeds are increased by the value of "motor_speed_increment" which is

10% in default as long as none of the four already is at full positive speed. If the robot is

driving backwards, an increase of the nagative value will force it to go slower backwards. If

the commands are sent through the radio connection, more then one key can be sent at one

time. A string of ten times "w" should be avoided, since the stress on the motor, the gearhead,

4.4 The different drive modes of Cool Robot 63

the support tubes and the axes is very high then because there is almost no delay between the

commands.

s All four motor speeds are decreased by the value of "motor_speed_increment" as long as

none of the motor speeds already is at full negative speed. If driving forward, the robot is

decelerated 10%.

a By sending the key "a" the motor speed A and motor speed B are decreasedangle
2

and motor

speed C and motor speed D are increasedangle
2

. The variable "angle" defines the radius for a

turn , if "a" was sent once. As the robot is skid steered, it can turn on one place by driving one

side of the wheels at 100% positive speed and the other at 100% negative speed.

If the robot is driving forward it will make a left turn with the key "a" but if the robot is driving

backwards it will make a right turn as the direction of "front" changes.

d The command "d" makes a right turn instead

Figure 4.7: Overview of motor

placement

of a left turn if driving forwards and a left turn

instead of a right turn if driving backwards.

q The command "q" forces the robot to stop within

a maximum time of two seconds. It decreases all

four motor speeds by 10% in a time delay of 200

milli seconds. That means if driving with full speed,

it takes 2 seconds to come to a full stop but only

1.167 seconds for a full stop if driving at partial

speed for example. This function is also used to

stop the robot if detecting a high tilt angle in drvie

mode "wp_follow_full".

4.5 Perspective on further drive modes 64

4.5 Perspective on further drive modes

Our task was to have an autonomous driving robot following waypoints. But as the Cool Robot

is driving along for weeks, many interrupts can happen. A blizzard can force the robot to turn

into the wind, or force it to stay at one point to recharge the batteries. The following drive

modes need to be implemented in the system in the future.

4.5.1 Charge cycle

Figure 4.8: Drive mode charge cycle

The drive mode "charge_cycle" will be necessary. The robot is powered with solar energy

which is not available all the time. During the austral summer in Antarctica we have almost

18 hours of sunshine, but blizzards are possible. And if the energy does not allow a movement

4.5 Perspective on further drive modes 65

at all, the energy consumption has to be reduced to a minimum to recharge the batteries with

the available sun power. The robot should be still able to read the sensors such as wind speed

to turn into the direction of the wind and should still have a connection to the user for a status

request for example. A possible configuration could be the routine in Figure4.8.

4.5.2 Stationary data aquisition

Figure 4.9: Drive mode stationary get data

The parameters for the scientific payload have not been specified yet. But as measurements

have to be taken stationary, the robot changes into a drive mode, which is similar to "charge_

cycle", except that some energy is used for the payload and that most of the bandwidth is

reserved for transmitting scientific data. A possible routine is pointed out in Figure4.9.

4.5 Perspective on further drive modes 66

4.5.3 High centered

This drive mode is possibly the hardest to predict. The idea behind it is to get the robot back to

navigating again once it is high centered on a large feature with two or more wheels with not

contact to the snow. The Cool Robot has a ground clearance of 23 cm which is not large, but it

could handle all the terrain during the tests on mascoma lake. Sastrugi features have one sharp

edge with slopes of not larger than 40◦. If the other side rises slowly, that is only a problem if

the robot drives parallel to that edge with one side of the wheel at the lower end and one side

driving on top of the sastrugi. If the feature rises rapidly, the robot will simply drive against it

like it is an obstacle and will not make any movements although the wheels are turning. The

currents will not drop and the motor velocities will not go up. The way to detect that will be a

task for the next students.

To detect a high centered position is already implemented in one of the interrupts. The robot

is stuck in a high centered position, if it is centered on a high feature with the bottom of the

chassis and two or more wheels with no contact to the snow. It is not able to drive on. The

sensors for motor currents, motor velocities and tilt angle detect this situation and the drive

mode "high_centered" is called to get all four wheels back on the snow. This has to happen

by designing a method to turn each wheel in a different direction and use the weight of the

wheels to force the robot to slide to one side and be able to drive back off that feature.

At the moment I have written a routine that tries to drive the robot backwards off that obstacle

and tries to turn one side of the wheel forwards full speed and the other side backwards.

67

Chapter 5

Communication of CoolRobot

According to the overall concept of the Cool Robot it should basically be able to travel

autonomously along a predefined track on the Antarctic plateau. The track will be defined

through an arbitrary number of waypoints that consist of GPS coordinates. Those can be im-

plemented in the control algorithm of the robot before it starts its journey.

So why communication between robot and base? There are a number of different reasons for

a communication system. The first and most important is the ability to alter the course of the

robot once it is started. At some point it might be essential to have the opportunity to stop the

mission and make the robot return to its base immediately. In other cases one may want to add

points to the route to take extra measurements, or just alter existing waypoints anticipating

possible problems on the planned route. Another argument is the fact that the robot might get

into some critical situation. Although the terrain on the arctic plateau is supposed to be quite

even it is possible to get stuck on one of the Sastrugi features. Some testing on hard snow with

features like those on the Antarctic Plateau showed that there is a possibility to get stuck if

the robot runs longitudinal onto one of those features. In that case the robot must be able to

realize it is stuck, which is part of the navigation process, try to get itself unstuck and if this is

not possible it has to send a status report back to the base. This report must contain at least the

position at which the robot got stuck to be able to pick it up. It might also be useful to have

all other available sensor data to get an exact idea of the situation. With enough information

about the actual situation of the robot it might be possible to free it by driving manually or

5.1 IRIDIUM Communication 68

with a special set of commands to move it based on the momentum of the wheels.

There are lots of other possible errors imaginable that could force the robot to stop. For ex-

ample, problems with the power system, low batteries, burned fuses or other hardware or

software-related problems. Finally it might be necessary to know where the robot is and in

what condition. It is quiet possible that the robot is not going as fast as is supposed to and

therefore is not able to finish the planned route within the time alloted for its mission. So, it

is important to check the progress periodically and be able to alter the track or cover extra

distance if it is ahead of schedule. Depending on the kind of scientific application of the Cool

Robot, it might also be necessary to send some of the measured data to base.

5.1 IRIDIUM Communication

Within the concept development of the robot the decision was made that an IRIDIUM modem

shall be use for the data-communication in the Antarctic. Iridium is a global satellite based

cell phone technology. At the moment, IRIDIUM is the only provider of satellite voice and

data solutions with coverage of nearly the whole surface of the earth including all oceans,

airways and also the arctic and Antarctic region. Due to the long distances of several hundred

kilometers the robot is covering IRIDIUM is the only way to stay in touch with Cool Robot.

Since Cool Robot is a lightweight construction there is no possibility to use big, heavy radios

with the range needed in this application. Another argument for not using such a radio is

the power consumption and power output, since this may affect the electronics controlling

the robot and also the measurements of the carried payload. The big advantage of IRIDIUM

technology is its global availability and the fact that it makes no difference if the operator is

also in the Antarctic or somewhere else in the world. The disadvantage is the high price and

slow bandwidth of 2400Bit/s. According to this, there will be no permanent connection but

rather only data-transfer when needed. Therefore, either the robot or the operator will have to

establish the connection. Figure5.1provides an example IRIDIUM application.

5.1 IRIDIUM Communication 69

Figure 5.1: Example for an IRIDIUM modem application

The IRIDIUM System was developed by Motorola in 1980 as a personal communication sys-

tem for users that need communications access to and from remote areas where no other form

of communication is available. It consists of 66 operational low altitude satellites grouped into

six polar planes of 11 satellites. Each of the satellites performs as node of the telephony net-

work. 13 additional satellites act as backup system. The satellites circle the earth once every

100 minutes in a near polar orbit at an altitude of 780km. On the surface the system comprises

system control segment and telephony gateways connected to the telephone system on earth.

The uplink to the satellites uses TDMA and FDMA multiplexing methods. TDMA reads Time

Division Multiple Access which is a technology for delivering digital wireless service using

time-division multiplexing (TDM). The radio frequency is divided into time slots which are

then allocated to multiple calls, so a single frequency is able to carry multiple, simultaneous

data channels. FDMA on the other hand means Frequency Division Multiple Access.

5.1 IRIDIUM Communication 70

Figure 5.2: FDMA versus TDMA

In case of IRIDIUM the frequency band is 1616-1626.5MHz and is divided into 20 channels

and each of those channels is time divided into 4 TDMA channels. This multiplies to 80

channels per cell. Considering that each of the 66 satellites has 48 cells this makes up a total

of 3168 cells. Only 2150 cells are active at a time, multiplied by 80 channels per cell the

system allows up to 172000 calls simultaneous. The bandwidth for each of the channels is

2400Bit/s when transmitting data and 4800Bit/s on a voice call.

5.1.1 The A3LA-I IRIDIUM modem

The IRIDIUM-modem or IRIDIUM Subscriber Unit (ISU) used when Cool Robot will be

deployed in the Antarctic is a Motorola 9505 A3LA-I. The unit will not be purchased but

rather borrowed for Cool Robots mission in the Antarctic. Thus, no example is available for

testing at the moment. I was only able to familiarize myself with some facts as well as the

handling and operation of this equipment.

5.1 IRIDIUM Communication 71

Figure 5.3: Motorola 9505 A3LA-I IRIDIUM modem

Other than normal IRIDIUM mobile phones this modem is special designed for the use with

computer or micro controller based applications. Using the modem alone no IRIDIUM call

can be completed because some additional equipment is needed. An antenna is required, since

the modem doesn’t come with one. Lots of different antennas for almost every requirements

are available on the market. The one preferred for our project is the NAL Research SAF2040

family of mobile flat mount antennas. They are designed to withstand harsh environmental

influences, are very small in dimension and most important the frequency range is fitted to

the the IRIDIUM requirements, which means they provide continuous coverage from 1610 -

1626.5MHz. The various Types of antennas of this family only differ slightly in their dimen-

sions and electrical specifications.

Figure 5.4: SAF2040-E mobile flat mount antenna

Due to the fact that there is no input or control device included with the A3LA it must be

attached to a micro controller or computer equipped with an RS232 serial port. All commu-

5.1 IRIDIUM Communication 72

nication between the ISU and the Data Terminal Equipment (DTE i.e. micro controller) takes

place over this serial connection. Depending on the attached DTE two wiring possibilities

are given. First a full 9-wire interface, incorporating hardware handshaking and flow control

or a 3-wire interface where only ground GND, receive RX and transmit TX are connected.

Connecting the A3LA to the Jackrabbit micro controller a 3 wire interface will be sufficient,

since hardware handshaking and flow control are not essential for us and would complicate

the communication routines and especially the wiring of serial port E. Since for this kind of

serial communication no SPI protocol is used it can take place while all other systems of Cool

Robot are running. The only disadvantage of the 3 wire interface is that some settings (see

chapter5.1.1.2) must be accommodated to this circumstances. When connecting the A3LA to

a personal computer the 9-wire interface is probably the better solution.

5.1.1.1 Using the A3LA-I IRIDIUM modem

For the control of the A3LA the the industry standardized basic (Hayes) AT command set plus

a extended AT command set is used. AT means Attention Code and signals the modem that

one or more commands are to follow. Both types of commands have different syntax to query

and adjust their settings. As these commands are industry standard language to communicate

with a modem it is used with most modems available on the market. All commands in this

language must begin with the characters "AT". The only exceptions are the repeat command

"A/" and the escape sequence "+++". Many of the basic commands consist of one single alpha

character in other cases a special character (like %, $ or *) precedes the alpha character. Most

of the extended commands use a "+" prefix plus alpha characters. For example:

Extended Cellular Commands

+C prefix - Used for GSM cellular phone-like functions (Standards: ETSI specifications GSM

07.07)

Extended Data Compression Commands

+D prefix - Used for data compression (Standard: V.25ter)

5.1 IRIDIUM Communication 73

Extended Generic Commands

+G prefix - Used for generic DCE issues such as identities and capabilities (Standard: V.25ter)

Extended Interface Control Commands

+I prefix - Used to control the DTE interface (Standard: V.25ter)

Motorola Satellite Product Proprietary Commands

-MS prefix - Proprietary to the Motorola Satellite Series product line

Both, the command prefix ("AT") as well as the command sequence itself can be typed in

upper or lower case but must not be a mix of both. Furthermore many commands can be typed

within one command line divided by spaces for better reading if desired. Figures5.5and5.6

show example commands and command lines.

Figure 5.5: Some sample commands with explanation (AT manual for A3LA)

Figure 5.6: Example for different ways to type commands (AT manual for A3LA)

The only limit hereby is the size of the command line buffer which normally accepts 39

characters including the "AT" prefix. Spaces, carriage return <CR> and line feed <LF> do not

go into the buffer and therefore don’t count against the 39 character limit. In case of a syntax

error within the command line or if the 39 character limit is exceeded the whole command line

5.1 IRIDIUM Communication 74

will be ignored and an ERROR result code will be returned. Possible result codes are shown

in Table5.11.

5.1.1.2 Outline on AT commands

In this section some of the most common commands of the AT command set will be intro-

duced. Essential commands will be explained by some examples including result codes as

answers from the modem. With this short introduction the reader should be able to originate a

data call , switch between in-call data mode and command mode, end a call and adjust some

basic settings that might be important for use within the CoolRobot project.

"+++"

So called escape sequence switches from in-call data mode to in-call command mode. The

modems answer is "OK".

"A"

The answer command "A" forces the modem to answer an incoming call immediately.

"A/"

Repeats the last command issued to the modem unless it was reset or power was interrupted.

"A/" is not followed by a <CR>. The answer depends on the last command.

"AT"

As mentioned earlier "AT" is the prefix for all commands except the repeat instruction "A/"

and the escape sequence "+++". "AT" entered on its own forces the modem to answer "OK".

"Dn"

Is used to dial a data or voice call number. Syntax is ATDnx...x, where n is a modifier

for the dial instruction and x...x represents the number to dial. Allowed values for x are

1234567890*#ABC. The modifier alters the way the A3LA is dialing:

5.1 IRIDIUM Communication 75

L redial last number

P use Puls dialing

T use Tone dialing

(it doesn’t matter whether Puls or Tone dialing is used)

+ international dial prefix

; start a voice call (without this a data call is originated)

> used to dial a number from the phone book

Table 5.1:Modifiers for Dn.

"En"

Determines whether characters are echoed locally. Echoing characters locally should be dis-

abled on the CoolRobots modem (see chapter5.2.1.2for explanation).

n = 0 characters are not echoed to the data terminal

n = 1 characters are echoed to the DTE.

Table 5.2:Modifiers for En.

"Hn"

Used to hangup a data or voice call originated with ATD, ATA/ or ATS0=n answer commands.

A zero value for n places the modem on the hook.

"On"

The online command switches from in-call command mode to in-call data mode. Any value

n=0 to n=255 is allowed but does not change the effect of the command.

"S0=n"

Sets the modems S0 register, which holds the setting for auto-answering to the value n carries.

Every value higher than 0 enables the auto-answering function. n=0 disables auto-answering.

It should be a good idea to enable this setting on the CoolRobots A3LA since answering a call

manually requires an extra function or routine that can be omitted using this setting.

5.1 IRIDIUM Communication 76

"Vn"

This sets the response format the modem uses either numerical or textual. n=0 causes numeri-

cal responses whereas n=1 causes textual answers. For the use with a PC the textual (Verbose)

mode might be the better way, whereas for the use with the Jackrabbit numerical answers

might be easier to process.

"Zn"

The "Zn" command acts as a soft reset and restores one of the two available user defined

configurations. See description of "&Wn" for information on storing user defined configura-

tions.

n = 0 restore user settings profile0.

n = 1 restore user settings profile1.

Table 5.3:Modifiers for Zn.

"&Cn"

This setting changes the behavior of the modem to the Data Carrier Detect signal (DCD),

which indicates whether the modem is connected to a remote station for data exchange or

not.

n = 0 DCD is forced on all the times.

n = 1 DCD indicates the connection status.

Table 5.4:Modifiers for &Cn.

"&Dn"

This option is used to determine the A3LAs behavior on the Data Terminal Ready (DTR)

signal. This signal can be used to end a call. The value of n determines the reaction of the

modem to a transition of DTR from ON to OFF during a call. Valid values for n are:

5.1 IRIDIUM Communication 77

n = 0 DTR is ignored

n = 1 the modem changes to in call command mode and if DTR is

not restored ON within 10 seconds the call is terminated.

n = 2 the modem changes to on-hook command mode (call is terminated)

n = 3 the modem changes to on-hook command mode and AT command

profile 0 is reset

Table 5.5:Modifiers for &Dn.

"&Kn"

This setting selects which flow control method is uses for the communication between DTE

and modem.

n = 0 no flow control is used (flow control is disabled)

n = 3 enables RTS/CTS (Ready To Send/Clear To Send) hardware flow control

n = 4 enables XON/XOFF software flow control (a standard flow controll

method to prevent overflow/overrun)

n = 5 enables both, RTS/CTS and XON/XOFF flow control

Table 5.6:Modifiers for &Kn.

"&Wn"

This command can be used to store the active settings in one of two available profiles.

n = 0 stores the active configuration as profile0 and

n = 1 stores the active configuration as profile1.

Table 5.7:Modifiers for &Wn.

+CBST

Select the bearer service type for mobile originated calls. This setting determines which mod-

ulation protocol is used for the data transmission during a data call. The command must be in

this form AT+CBST=<speed>,<name>,<ce>.

5.1 IRIDIUM Communication 78

<speed> can have the following values:

0 Autobauding

1 300 bps V.21

2 1200 bps V.22

4 2400 bps V.22bis

6 4800 bps V.32

7 9600 bps V.32 (default)

65 300 bps V.110

66 1200 bps V.110

68 2400 bps V.110

70 4800 bps V.110

71 9600 bps V.110

<name> takes the following value:

0 data circuit asynchronous

<ce> can only take the following value:

1 non-transparent

Table 5.8:Possible values for +CBST command.

As mentioned earlier some settings must be adjusted if a 3-wire interface is used to connect

the A3LA with the DTE. When operating with a 3-wire connection, the following limitations

apply:

AT&Dn must be set to AT&D0 to ignore the DTR input from the data terminal, as it will not

be present as an input from the micro controller.

AT&Kn must be set to AT&K0 for no flow control or AT&K4 for XON/XOFF software flow

control, as RTS (Request To Send) and CTS (Clear To Send) hardware flow control signals

will not be present.

AT&Cn setting will have no affect, as DCD (Data Carrier Detect) output to the data terminal

will not be present.

AT&Sn setting will have no affect, as DSR (Data Set Ready) output to the DTE will not be

present.

RI (Ring Indicate) output to the DTE will not be present.

5.1 IRIDIUM Communication 79

The following will describe an example for a communication between the A3LA IRIDIUM

modem and a personal computer. In this case data call is established, data will be transmitted

and the call is terminated by side that started the call.

AT+CBST=4,0,1 asynchronous communication at 2400Bit/s

it is sufficient to set this once and maybe save the

profile using the "Wn" command

OK acknowledgment from modem

ATD+1603123456 dial international (American) number 603-123-456

CONNECT 9600 answer from modem: connection to remote host is established

baudrate between DTE and modem is 9600Bit/s

<—> now the data transfer takes place, every data passed

to the modem will be sent to the remote modem

+++ escape sequence forces the modem to in-call command mode

OK acknowledgment

ATH0 places modem on the hook (terminates call)

OK acknowledgment

Table 5.9:Example: originating a data call.

The next example is quiet similar to the one above, only this time the data call is not originated

from the considered modem but from a remote station.

RING indicates an incoming call

ATA manually answer the call (not applicable if ATS0=1 is set)

CONNECT 9600 answer from modem: connection to remote host is established

baudrate between DTE and modem is 9600Bit/s

<—> now the data transfer takes place, every data passed

to the modem will be sent to the remote modem

NO CARRIER the call has been terminated by the other side

the modem switches back to on-hook command mode.

Table 5.10:Example: incoming data call.

5.1 IRIDIUM Communication 80

These two examples show the most of the basics needed for the use of the A3LA IRIDIUM

modem related to the CoolRobot project. All other shown commands are only needed to adjust

settings depending on the application the modem is used for either connected to a PC or to the

Jackrabbit micro controller. Table5.11gives a review of the essential return and error codes

the IRIDIUM modem may produce.

Numeric Textual Description

0 ’OK’ Acknowledges execution of command;

voice call connection has been established.

1 ’CONNECT’ Data call connection has been established.

2 ’RING’ Incoming data or voice call received (unsolicited).

3 ’NO CARRIER’ Data or voice call connection terminated.

4 ’ERROR’ Command not accepted.

5 ’CONNECT 1200’ Data call connection established at 1200 bps.

6 ’NO DIALTONE’ No dial tone detected.

7 ’BUSY’ Busy signal detected.

8 ’NO ANSWER’ Data or voice call connection completion timeout.

9 ’CONNECT 0600’ Data call connection established at 600 bps.

10 ’CONNECT 2400’ Data call connection established at 2400 bps.

11 ’CONNECT 4800’ Data call connection established at 4800 bps.

12 ’CONNECT 9600’ Data call connection established at 9600 bps.

44 ’CARRIER 1200/75 ’ Data rate detected at V.23 backward channel.

48 ’CARRIER 4800’ Data rate detected at 4800 bps.

49 ’CARRIER 7200’ Data rate detected at 7200 bps.

50 ’CARRIER 9600’ Data rate detected at 9600 bps.

67 ’COMPRESSION: V.42 bis’ Data call connected with V.42bis compression

enabled.

69 ’COMPRESSION: NONE’ Data call connected with no data compression.

as textual ’+DR: V42B NONE’ Data call connected with no data compression.

as textual ’+DR: V42B TD’ Data call connected with V.42bis compression

enabled on transmit direction.

as textual ’+DR: V42B RD’ Data call connected with V.42bis compression

enabled on receive direction.

as textual ’+DR: V42B’ Data call connected with V.42bis compression

enabled on both transmit and receive direction.

Table 5.11:Overview of AT command result codes.

5.2 Radio Communication 81

5.1.2 Prospect on further use

In contrast to the communication via the radio modem (see chapter8.4) where a more or

less permanent connection is established before Cool Robot starts a journey, here only short

time frames are available to exchange data between the robot and an operator or supervising

base station. For each of those time frames a dial up connection must be started either from

the robot or the remote station. There should be no problems with an incoming call to the

robot, since the IRIDIUM modem will be in standby all the time. As soon as a call arrives the

modem will send a "RING" signal to the micro controller indicating an incoming call. The

micro controller will accept the call and receive and compute the incoming data.

The other way around it is very similar: the micro controller passes the command to dial the

number of the base station and transmit its data as soon as the connection is established. The

only issue will be to determine when the robot will create a connection and why. Certainly

the base needs to know whenever Cool Robot encounters problems on its way or stops for

some reason. There may also be a need for event-driven status reports the robot should give in

repetitive intervals. I wrote some basic code for an IRIDIUM-based communication including

some functions to originate and end a call, accept an incoming call as well as an adapted main

routine "mainprog_2.3x. But all this is only a rough frame that must be fitted to the needs of

the Cool Robots mission once all general conditions are clear and the IRIDIUM equipment is

available for testing.

5.2 Radio Communication

Due to high cost of the Iridium-connection another communication is needed for the testing

during the development of the robot. During this time a more or less permanent connection is

required and a range of several hundred meters is sufficient. The cheapest and easiest solution

for a short-range digital wireless communication is a packet radio connection. A packet radio

station consists of three basic parts as shown in Figure5.7.

5.2 Radio Communication 82

Figure 5.7: Components needed for packet radio communication

• The transceiver with antenna:

(1) sends and receives radio signals to and from your antenna and

(2) passes audio signals back and forth between itself and the TNC.

• The TNC (Terminal Node Controller):

(1) translates audio signals into digital information and vice versa,

(2) performs a number of control and information storage functions, and

(3) communicates digitally with your computer.

• The computer communicates digitally with the TNC, so you can:

(1) view messages received from the transceiver or stored in a mailbox (i.e., PBBS),

(2) use the computer to send data to, and receive data from, other stations, via the TNC

and your transceiver, and

(3) control the operation of the TNC.

In our case the transceivers were a set of two Cobra FRS 105 hand held radios, which were

replaced with ICOM 4088 radios. As Terminal Node Controllers two Kantronics KPC3plus

packet radio modems are used and as Terminals the Jackrabbit RCM3100 micro controller

is used on the robot-side and a personal computer with terminal software such as "Hyper-

Terminal" can be used on the user side. Those components are fairly cheap and permanent

connection can be established without any extra expense.

5.2 Radio Communication 83

5.2.1 The Kantronics KPC3plus packet radio modem

The packet radio modem we are using is a commercial Kantronics unit priced $186 (figure5.8.

It is fairly lightweight weighing only 320g and small, measuring 133x133x21mm. Another

positive aspect is the low current just below 30mA at 6-25VDC when the unit is active and the

control LEDs are on. This power consumption can be cut down to around 15mA at 6-25VDC

by turning off the control LEDs using the command "LEDS OFF". The modem connected to

the PC is powered by a 9V battery and the other modem inside the CoolRobot is supplied by

10VCD from the internal housekeeping power supply.

Figure 5.8: KPC3plus front view

As Modem is a short form of Modulator/Demodulator this device transforms the digital in-

put signal it receives via an RS232 serial interface into an analog signal a common FM

transceiver can handle. The KPC3plus uses the CCITT (Comité Consultatif International

Téléphonique et Télégraphique) V.23 standard. This standard determines parameters for a

1200Bit/s 1300/2100Hz FSK full duplex communication. The data is transferred between two

stations with a baud rate of 1200Bit/s in both directions. Data can be transferred both direc-

tions simultaneously, but in this standard only one direction can use the 1200Bit/s and in the

reverse direction the baud rate is just 75Bit/s. The sense in this is that a package of data is

sent from one modem to the other using the fast baud rate the receiving modem is able to re-

spond with a short acknowledgment or request to resend at 75Bit/s while receiving more data

at 1200Bit/s. No matter which station is sending, the data package is always transferred using

the fast baud rate, only the response uses the slower speed. The digital data is encoded using

FSK (Frequency Shift Keying). The digital information must be transformed into something a

commercial radio can transmit; therefore the logical values "0" and "1" are represented by two

different frequencies within the hearable range. A space or "0" is presented by 2100Hz and

"1" (mark) by 1300Hz. This speech-like formation can be transmitted by virtually every radio.

5.2 Radio Communication 84

Figure5.9shows the principle of frequency shift keying. The first diagram shows 1300Hz and

2100Hz sine waves and diagram two a digital signal of altering "0" and "1". The last diagram

shows the corresponding analog signal.

Figure 5.9: 1300/2100Hz Frequency Shift Keying

5.2.1.1 Setting up the KPC3plus

This part describes how to set up the KPC3plus including basic wiring when connecting it

to a computer or the Jackrabbit micro controller as well as connecting it to a transceiver.

Figure5.10provides a basic wiring overview. For further information the KPC3plus manual

is recommended.

5.2 Radio Communication 85

Figure 5.10:Basic wiring of the KPC3plus radio modem

To connect to the radio modem a computer with a RS232 interface and a terminal-software like

Hilgreaves HyperTerminal, which is included in most MS Windows installations, is required.

To connect the KPC3plus to a PC an ordinary serial cable with a male and a female DB-9

connector in combination with the included DB-9 to DB-25 adapter. The modem uses an 25

pin serial connector, so either the adapter must be used or a custom cable can be built with the

following wiring:

KPC3plus Computer

(DB 25) (DB 9)

2 3 TXD

3 2 RXD

4 7 RTS

5 8 CTS

7 5 SG

6 6 DSR

8 1 DCD

20 4 DTR

Table 5.12:Pinouts RS232.

5.2 Radio Communication 86

The connection to the micro controller is little more complicated. For the communication

with the modem serial port E is destined. The Jackrabbit has 6 serial interfaces but only two

of them, serial port B and C, are immediately usable from the evaluation board. Serial port A

is used for programming and debugging using the DynamicC software and ports D, E and F

are available, but only directly from the micro controller. The problem here is the micro con-

troller’s logic uses 3.3V whereas a RS232 interface uses 5V logic. Furthermore the Jackrab-

bit’s serial ports construe 3.3V (high) as logical "1" and 0V (low) as logical "0". RS232 is the

other way around, low 0V are interpreted as "0" and high 5V as "1".

Therefore a RS232 driver needed to be installed on the evaluation board. The driver of our

choice is a -40◦C rated Maxim MAX3232I RS232 line driver/receiver. This 16 pin surface

mount IC is good for two serial interfaces, in our case serial port E and F. For the communica-

tion between micro controller and radio modem or rather the IRIDIUM modem later on serial

port E is reserved and port F will be used to interface with the data logger.

Figure 5.11:Pinouts MAX3232 RS232 line driver/receiver

The RS232 driver/receiver is soldered to a small multipurpose board including all necessary

capacitors, this work was done by Alex Streeter. The small board is located on the empty area

5.2 Radio Communication 87

on the RCM3100 evaluation board. The two serial interfaces are conducted on a 10 pin IDC

connector for ribbon cable.

Figure 5.12:Wiring of the MAX3232 on the RCM3100 evaluation board

Another issue is the connection between the KPC3plus and our transceivers. One can find a

lot of wiring examples within the KPC3plus manual, but none for Cobra radios. So in the first

place we tried to figure out a way ourselves by soldering the wires for PTT (Push To Talk),

RX (Receive data), TX (Transmit data) and GND (Ground) to the circuit board of the radio.

But none of the things we tried worked out. So we borrowed another set of hand held radios,

two ICOM 4088 from Prof. Cooley, because for ICOM radios some wiring examples were

available within the KPC3plus manual. The most reasonable of the different suggestions to

do this wiring was using the microphone and speaker jacks available on top of the radios.

As suggested in the KPC manual 5-wire, shielded cable was used. To keep electro-magnetic

interference as low as possible only the very last centimeters of the cable are unshielded and

the capacitor, as well as the resistor are placed within the housing of the microphone plug.

Figure 5.13:Wiring suggestion for ICOM radios

5.2 Radio Communication 88

This setup worked quiet well and so proved that it is possible to transfer digital data using the

Kantronics packet radio modems and some commercial hand held radios as transceivers.

5.2.1.2 Using the KPC3plus

If the KPC3plus is started for the first time or after a reset it is running its AUTOBAUD-

routine, trying to negotiate the baud rate with the terminal it is connected to. Therefore it is

sending a request to type a "*".

Figure 5.14:AUTOBAUD routine running on Hyperterminal

Once this character is typed and sent to the modem by hitting carriage return - all commands

and data for the KPC3plus must be terminated by a carriage return character <CR> - the

modem is able to detect the baud rate used by the terminal it is connected to. This baud rate

is stored and can only be changed by erasing the modem settings memory by setting and

resetting jumper J11. On the next startup of the modem it will run the AUTOBAUD routine

again and the baud rate can be changed. After completing AUTOBAUD the modem asks for a

callsign which will also be stored in the KPC3plus and used until it is changed. The callsigns

for the two modems used are "MAHONY" for the modem on the Cool Robot and "GOEK"

for the modem used with a PC. These can be changed easily typing "MYCALL <desired

callsign><CR>".

5.2 Radio Communication 89

Figure 5.15:MYCALL command using Hyperterminal

As soon as the callsign is set the KPC3plus is ready for sending packet data. There are dozens

of further settings a user can change but only one of them is off greater importance for our

application. Using the "ECHO" command, one can determine whether characters sent to the

modem should be echoed locally or not. For use with a personal computer and terminal soft-

ware this is not very important, since this setting can also be made within the terminal soft-

ware. The Jackrabbit on the other hand has no need for an echoed character. In fact this is

actually bad for the communication routines, since every incoming character-string is inter-

preted by a function within the communication routines (see chapter7.3.2) and may cause

wrong or unwanted inputs. It would certainly be possible to compare everything received

to what was send but this would waste scarce runtime and memory on the micro controller.

So the Cool Robot’s modem does not echo received characters. This setting is made typing

"ECHO<CR>" to check whether the option is active or not and if its on one can simply type

"ECHO OFF<CR>" to turn it off. As matter of course the other way around, typing "ECHO

ON<CR>" turns character-echoing on again.

5.2 Radio Communication 90

Figure 5.16:ECHO ON/OFF command using Hyperterminal

After connecting the radio modems to their terminals and transceivers and setting them up

properly establishing a wireless connection is quiet easy. By just typing "connect <callsign>

<CR>" after the "cmd:" prompt the KPC3plus tries to connect to another packet radio station

with the specified callsign. The KPC is sending out a request for connection nine times ap-

proximately every 5 seconds. If it isn’t receiving an acknowledgment to its request after nine

attempts it determines no station with this callsign is near and prints: "retry count exceeded

***DISCONNECTED". If there is another station with the desired callsign near this station

will respond to the request and determine it is connected to the host sending the request. If

the requesting station receives this acknowledgment it also spots the connection and prints

"***CONNECTED to <callsign>".

Figure 5.17:Unsuccessful and successful attempt to connect.

5.2 Radio Communication 91

As soon as successful connection is detected the modem switches from it command mode to

the data mode. The "cmd:" prompt will no longer be displayed and every typed input will

be sent to the remote station if carriage return is hit. Furthermore, every incoming data will

be displayed immediately. To switch back and forth between command mode and data mode

pressing <Ctrl> + "c" keys at once can be used. For example to end a active connection in data

mode you must switch to command mode and type "disconnect"<CR> or short "d"<CR>. The

remote station will be announced of the termination of the connection and a "***DISCON-

NECTED" message will be displayed in the Hyperterminal window.

During an active connection all kinds of data can be passed on to the KPC3plus to be sent to

the remote station. In our case almost all transmitted data consists of simple ASCII strings as

commands or data input for Cool Robot. Not only short text messages but also files can be

sent trough Hyperterminal by selecting "Transfer" option and "Send File...". This enables us to

send longer sets of data, like a bunch of waypoints, without typing them over and over again,

but store them in a ASCII text file and send them by only two mouse-clicks. The KPC3+ is

able to send data-packets of a size from 1 Byte to 256 Bytes. Larger input data is divided into

the needed number of 256Bytes packets. Every single packet consists of an address-header, a

control part, the data itself and a checksum as shown in Figure5.18.

Figure 5.18:Structure of KPC3plus data packets

5.3 Controling the CoolRobot via radio link 92

Thus, it is possible to send even big text files without any problems except the slow bandwidth

of only 1200Bit/s which equals 150Byte/s. Consequential transmitting a text file of 1kByte

would take approximately 6.7 seconds. Within this no extra time is included caused by the

data of the packet structure and especially not the waiting time for the response from the

remote station, whether the packet is received correctly or not. Which is not very fast and

therefore not appropriate for transmitting bigger amounts of data. For our use this bandwidth

is ok, since we got no need for transmitting data exceeding 1kByte. For example a set of 5

waypoints (see chapter5.3.3) for the Cool Robot sum up to round about 120 Bytes plus the

data caused by the structure the modem appends. Thus, the transmission of 5 waypoints will

take about one second, which is absolutely sufficient for our application.

The receiving station verifies the checksum appended to the data packet and responds to the

station which sent the packet whether it received the packet correctly or not. If the packet

wasn’t received correct or there is no answer at all after approximately 3 seconds the packet

will be sent again. After 20 unsuccessful attempts to send a packet the modem determines the

connection as lost and prints a "***DISCONNECTED" message to the attached computer. If

this happens either the remote station is out of range or it isn’t broadcasting any longer.

This is basically what is needed to use the KPC3plus radio modem to controll Cool Robot

remotely either for driving it manually, get information on the robots condition or send new

commands or waypoints.

5.3 Controling the CoolRobot via radio link

One major goal of my work was the ability to control Cool Robot remotely. This includes

remote manual driving of the robot as well as getting information about the robots status

without having a personal computer attached to it by wire. This feature is quite important for

serious testing with the robot, since it is important to know what is going on with the control

and navigation algorithm of the robot. Obviously it is very inefficient and also inconvenient

walking next to the robot holding a laptop and observe the robots behavior,especially in fairly

cold and windy weather conditions. The idea is to be able to observe and controll the robot

5.3 Controling the CoolRobot via radio link 93

from a car waiting in some distance or maybe follow the robot within a certain range. Within

this section the reader will be introduced to the operation of Cool Robot via the radio link.

I am going to explain how a connection between robot and operator can be established and

terminated, how different types of data can be transmitted to CoolRobot, how the data is

computed and what the robots answers to certain requests are.

5.3.1 Establish and terminate a connection

Before attempting to connect Cool Robot and a remote station all the hardware should be

set up properly. At first, the radio modem must be connected to the internal power supplies

within the robot. There is one connector for the housekeeping power supply which provides

the radio modem with +10VDC. The radio modem used with a laptop as control station and

both radios run on batteries, the modem requires a 9V block battery and the radios need 3

AA 1.5V batteries each. When starting a test run both modems, as well as both radios should

be turned on before compiling the software to the Jackrabbit micro controller. The channel

used with the radios is not of importance and can also be changed during a run if there is any

disturbance on the channel.

As described in chapter7.4 different versions of the main control program are available for

the use with the radio connection. One of them "mainprog_v0.34" (see chapter7 for detailed

description) is totally based on an radio connection. When the program is compiled to the

Jackrabbit and the program starts it is checking if the modem is on and if this is true it will

try to connect to the remote host by sending the "connect" command once to the modem.

The modem will now try to reach the designated remote host for approximately 1 minute.

After this time the robot will wait for an incoming connection and do nothing until it detects

a connection to the remote host. After a successful connection the robot switches to manual

drive mode and can now be driven manually or switched to another drive mode. If the modem

was off on program start the controller is waiting until the modem is turned on and performs

the same way as if it was on at start up. If a loss of the connection is detected for any reason

the robot will stop and wait until the connection is established again by the remote control.

5.3 Controling the CoolRobot via radio link 94

The second version "mainprog_v0.35" is not as reliant on a radio connection as the first one.

It is also checking whether the robots modem is on or off at startup. If the modem is off the

robot will also stay inactive and wait until it is turned on. After a "modem on" is detected

the robot will immediately switch to waypoint following at full speed and start navigating

toward the first waypoint. The initial waypoints are stored in a string defined within the main

program and are activated one start up of the program (see chapter7.1 and7.2). Besides it

will act quite similar to the first version of the main routine. It will try to get a connection for

about one minute and after that listen for incoming connections. If a connection to the remote

host is detected the robot will go on with the waypoint following but it will furthermore send

back its navigation data after every successful run through the navigation algorithm. As soon

as a connection is established the robot can of course be controlled like in the first program

version. The only difference is, if the connection is lost again the robot will go on with the

waypoint following instead of stopping and waiting to reconnect again. Thus, using one of

the mentioned main routines the robot will always try to establish a connection, as soon as

it realizes the radio modem is on. If the attempt is not successful it will listen for incoming

connection requests and autonomously recognize if a connection is established or maybe lost

again. The operator can easily establish and terminate the radio connection as described in

chapter5.2.1.2. The robot will never terminate an existing radio connection, since there is

simply no need for this feature. A connection can only be terminated by the operator if a need

occurs. For example if one test run is finished and another program should be compiled to

the micro controller, or if the there is a need for recompiling the program an existing radio

connection should be terminated by typing <Ctrl> + <c> and <d> <CR> (see chapter5.2.1.2).

This may avoid some hassle while trying to connect again. The point is the modem on the

robot will not realize that the connection is lost without failing to send a data packet or the

notification from the remote station that the connection is terminated. Therefore it will be

confused if there is another incoming connection request from the station it is supposed to be

connected to. Clearing this confusion always takes some time, which can be easily avoided by

terminating the connection before a restart of the program.

5.3 Controling the CoolRobot via radio link 95

5.3.2 Manual drive mode

The use of the manual drive mode is the ability to maneuver CoolRobot over short distances

and in places where high mobility is needed, for example to drive it out of a building or vehicle

to an open area where it is able to navigate on its own. Furthermore the ability to drive the

robot manually like a remote-controlled car is essential during testing, since it is the only way

to make the robot drive over certain obstacles forth and back and repeat this over and over

again or just drive straight line to collect current measurements and so on.

The intention was to make the robot driveable like a small remote controlled car. Unfortunately

there is no actual remote control with a steering wheel and a throttle but with a notebook

attached to the radio modem and radio it is very similar. In the first place Goetz wrote a

function to control the robot while it is connected to a computer via the programming cable.

The program continuously queries if one of the keys "w","a","s","d" or "q" is pressed and

converts the input into commands to the motor controllers. The speed for all four wheels will

always be between +100% and -100% and the speeds of front and rear wheels of one side will

always be equal.

w increase speed by 10% of full speed

s decrease speed by 10% of full speed

a turn to the left (decrease speed of the left wheels by 10%

and increase speed of the right wheels by 10%)

d turn to the right (increase speed of the left wheels by 10%

and decrease speed of the right wheels by 100%)

q stop (put the wheel speeds to 0 in 10% steps every 100ms)

p switch to waypoint following at full speed

(short cut for command "$CRCMDMANDM" - see table5.15)

Table 5.13:Control keys for manual driving.

Within the next logical step this principle was adapted to wireless solution as soon as the radio

link was available. Since it is very inefficient and slow to send every typed character on its

own a arbitrary long series of characters can be typed an sent to the robot by pressing carriage

return <CR>. The string will be computed character by character and the motor speeds are

5.3 Controling the CoolRobot via radio link 96

updated after every valid controll character. If some character, other than w,a,s,d or q is typed

it is simply ignored. For example if the robot is standing with all motor speeds set to zero

percent the string "wwwwaa" will force it to accelerate in steps of 10% up to 40% and then

take a left turn by decreasing the left wheel speeds by 20% and increasing the right wheel

speeds by 20%. To keep track of the actual motor speeds the robot sends them back to the

base every 10 seconds.

Figure 5.19:Screen shot of Hyperterminal while in manual drive mode

The interval for the motor speed sending is intentional chosen quite long to keep the data traf-

fic low and guaranty that commands to the robot are delivered as fast as possible. When Cool

Robot resides in manual drive mode it will only move if an radio connection is established and

if the connection is lost the robot will stop immediately after it realizes the disconnection. This

takes about 60 seconds, because the modem resends packets for this time before the connec-

tion is determined as lost. Besides it is not possible to access the manual drive mode without

an active radio link. One additional controll key is implemented in the actual version of the

manual drive mode. By sending a "p" character, the robot stops immediately and switches to

waypoint following at full speed. Normally drive modes are switched by another command as

described later on, in this special case I implemented some kind of hot-key for the navigation

testing.

5.3 Controling the CoolRobot via radio link 97

5.3.3 Waypoint following

During waypoint following at full or partial speed the movement of the robot cannot be in-

fluenced, since it is navigating on autonomously. It is only possible to switch to another drive

mode, i.e. from waypoint following at full speed to partial speed, to reduce the robots speed

or to the manual drive mode to controll Cool Robot completely manual. Thus, there are no

commands to control the robot in general. Besides from that the robot will send all important

navigation data back to its base if an active radio connection is existent. This data is condensed

into one fairly long string. Every bit of data is divided by the next by an abbreviation of its

meaning and ":" separators. The complete datastring looks like the following example:

gps:$GPRMC,183137.00,A,4336.5477,N,07207.4734,W,1.0,

339.5,260205,,*25:aw:4336.600002,N,727.800000,W:bp:

4336.551742,N,727.555389,W:cp:4336.547702,N,727.473400,

W:dw:0.448103:bw:282.402374:dbp:0.111044:bbp:0.111044:

cd:0.022833:cb:354.567535

The meanings of the abbreviations are as follows:

gps contains the complete string as it was received from the GPS unit

aw shows the active waypoint the robot is heading to

bp shows the active basing point the robot is heading to

cp shows the current position of the robot

dw contains the current distance to the active waypoint in kilometers

bw contains the current bearing to the active waypoint in degrees

dbp contains the distance to the active basing point in km

bbp contains the current bearing to the active basing point

cd means current distance - traveled since programm start

cb means current bearing clockwise counted from north

Table 5.14:Components of navigation data string.

Such a set of data is approximately 235 characters long which equals 235 Bytes. Since the

maximum amount of data the modems can handle in one data packet is 256 bytes each of

5.3 Controling the CoolRobot via radio link 98

those data sets fits within one packet and the transmission takes round about 2 seconds. The

robot is sending this data once after every completed run through the navigation algorithm.

Since it takes something between 5 and 20 seconds for one complete navigation step, including

the turn the robot takes for its course correction, there is enough time to send data packets of

this size once every step.

5.3.4 Other commands and functions

Irrespective of the drive mode there is always the possibility to send new waypoints to the

robot, or request its current status or some of the stored data. One of the most important

features within the communication topic is transmitting new waypoints to the robot and by

determining the robot’s future route. To send the robot one or more new waypoints a simple

string must be send, containing the number of waypoints send in this packet and the waypoint

data. To be able to process all incoming data as fast and secure as possible I figured out that

all the commands used within the data transfer, except the command strings for the manual

driving, should have a certain structure and an equal header. Since the appearance of such a

header is not of significant importance I decided to use a $ character followed by the characters

"C" and "R" as they are the initials of CoolRobot. This pre-header is followed by three further

character which indicate what type of data follows or respectively what kind of command is

received. New waypoints are indicated by the characters "WPT". The header is then followed

by a comma (","), the number of waypoints to follow and another comma. The waypoint data

is subsequently attached, every waypoint must be divided from the next by another comma

and the waypoints must be of the following syntax:ddmm.mmmmLdddmm.mmmmB. The first

9 characters determine the latitude in degrees (dd) and minutes (mm.mmmmm) and the tenth

character holds the information whether the waypoint is in the northern (N) or southern (S)

hemisphere. It is almost the same with the longitude data, three characters for degrees (ddd)

seven characters for minutes (mm.mmmm) and one for eastern (E) or western (W) direction.

Thus, a full example will look like this:

$CRWPT,2,4338.1000N07209.1200W,4337.9200N07208.7600W,

5.3 Controling the CoolRobot via radio link 99

The last comma is not neccessary but it also wiil not bother the function processing this input.

If the waypoint string was send and received correctly CoolRobot will answer how much new

waypoints it received and stored. Alternatively if any error occurred within the waypoint string

the robot will respond only with the number of waypoints it received correctly. For example

if 5 waypoint were sent and there is a problem within the third waypoint the robot will only

store the first two correct waypoints and report that it successfully received 2 waypoints.

Figure 5.20:Screen shot of Hyperterminal: sending waypoints

For the testing it might also be important to manually switch between different drive modes

back and forth. Therefore a set of commands is implemented to enter every of the four imple-

mented drive modes independent from the robots actual drive mode. The commands consist

of the header "$CR" plus three characters indicating a command "CMD" and code of five

characters for each drive mode. The full command sequence for each drive mode is show in

the following table.

"$CRCMDMANDM" to enter the manual drive mode

"$CRCMDWPFFL" to switch to waypoint following at full speed

"$CRCMDWPFPT" to switch to waypoint following at partial speed (60%)

"$CRCMDGOTST" to switch to the special drive mode when the robot got stuck

Table 5.15:Overview of commands to enter/switch drive modes.

5.3 Controling the CoolRobot via radio link 100

The last two commands for a status request and a data request are already implemented in the

communication code but not 100% functional at the moment. Both of them cause an answer

from the robot but act more as an example for further use then as real fully functional features

of the communication. To originate a status request the command string "$CRSRQ" must be

send to the robot and it will answer this request with a string containing only the number of

the actual drive mode it reside in plus the actual set motor speeds.

Figure 5.21:Screen shot of Hyperterminal: requesting CoolRobots status

A data request, performed by sending "$CRDRQ", is a little bit more functional, since on a

data request the controller will try to open the logfile and read back the last 32bytes to send

them back to the user (described in detail in chapter7.3.3). If the logfile cannot be opened,

because it does not exist, there is no data or less than 32 bytes to read back the answer will be

"could not open logfile" respectively "no data found".

5.3 Controling the CoolRobot via radio link 101

Figure 5.22:Screen shot of Hyperterminal: requesting data from CoolRobot

These are all communication related commands and features actually included with the Cool-

Robots main program. For a short summary on the reliability and the test results with Cool-

Robot and its communication system see chapter8.4.

102

Chapter 6

Data storage

Since CoolRobot is designed to act as a multi purpose mobile platform for scientific mea-

surement instrument in the Antarctic region one of the main issues within the future missions

will be to collect and record data of the scientific payload. Most of this scientific data will be

analog output voltages from various sensors. To record this data the robot will be equipped

with a Campbell Scientific CR1000 datalogger which just arrived and is now available for first

tests.

Figure 6.1: Picture of the Campbell Scientific CR1000 datalogger

Besides this scientific data produced by the carried payload, the robots internal sensors and

the control algorithm itself will produce a lot of data too. Especially within the robots first

mission and during the test runs at Dartmouth and later on in Greenland this sensor data is

6.1 Storage and retrieval of internal sensor data 103

of special interest, since the whole behavior of the robot can be reconstructed and analyzed

using this data. Interesting are for example the currents the motors draw as well as the overall

current from the batteries while traveling along differently shaped paths to prove the existing

estimates for the power consumption. On the other hand a lot of the data used within the

navigation algorithm is of big interest for later analysis of the way the robot traveled. At the

moment it is needed to prove the navigation algorithm is working correct and stable.

6.1 Storage and retrieval of internal sensor data

The alternative to using a datalogger is the internal flash memory of the micro controller. The

DynamicC software provides a library which allows to build a file system known as file system

mkII or FS2 within the Jackrabbit’s first or second flash memory. Depending on the micro

controller used the second flash may or may not be available. The Jackrabbit RCM3110 core

module provided with the evaluation board has got one flash memory of 256k Bytes whereas

the RCM3100 core module has twice as much flash memory divided into two separate chips.

Both of the memory sections can be used as code memory and as memory for the file system,

but normally the first flash is used as code space and the second flash is reserved for a file

system. There is a possibility to use parts of the first flash (especially if it is the only flash

device) to install a file system but since the software for the CoolRobot uses program space of

more than 130k there is not much space left to store data.

Figure 6.2: Picture of Z-Worlds RCM3100 core module

6.1 Storage and retrieval of internal sensor data 104

We switched to the RCM3100 processor and now have up to 256k space for a file system and

a lot of space for further software enhancements. This theoretical value cannot reach 100%

because some of the space is used internally for the data management of the file system. The

maximum number of files to be used as well as the desired logical sector (LS) size limit the

actual space available. A few big files are more efficient than a lot of small files because every

file needs one sector for its metadata, which is data used by the file system managment and

therefore more files equal more memory used for the metadata. The LS size also got a big

influence on the efficiency of the used memory. There is one sample program ("FS2INFO.C")

included with the DynamicC package which checks the specifications of all memories at-

tached to the micro controller regarding the filesystem and displays the results as shown in

figure6.3. The test was performed on the RCM3100 board and the second Flash memory is

shown as device number 1, device class byte-writeable. Device number 2 is the 512k Byte

RAM memory, the reason why there are only about 128k available for files is that specific

areas of this memory are used by the Jackrabbits BIOS.

6.1 Storage and retrieval of internal sensor data 105

Figure 6.3: Screen shot of FS2 sample program showing specifications of the Flash mem-

ory

According to those results I set up the file system in the second flash with the recommend

parameter LS size at 1024 Bytes for maximum efficiency. I wrote a test program to create a

testfile and fill it with virtual navigation data. When reading the file back with a small program

I wrote ("2ndFlashReadLogFile.C") I came up with a maximum file size of 256.396 Bytes in

two independent test runs. This is a bit more than estimated because I only used one file to

store all the test data and the estimate was calculating with 6 files.

To get an image of what we are able to record with this amount of memory, lets take the actual

navigation process and the data recorded or sent to the base while navigating. As mentioned in

chapter5.3.3, one complete set of navigation data, including the original string received from

the GPS unit, the waypoint, basingpoint, both current points and all of the calculated distances

6.1 Storage and retrieval of internal sensor data 106

and bearings sums up to round about 235 characters which equals 235Bytes depending on the

actual values carried. Considering the available memory of slightly above 253kBytes we are

able to store an estimate of 1075 sets of data. Assuming an average time between the storage

of two data sets of 33 seconds (30 seconds from one navigation cycle to the next plus the time

the turn for the course correction takes, estimated to 3 seconds in average) the total recordable

time would multiply to:

1075 · 33sec = 35475sec = 519.25min = 9.85h

Thus, we are able to record nearly ten hours of continuous waypoint following in detail. This

time grows even bigger considering the original GPS string, as well as some other recorded

values, are not essential for later analysis. Just cutting down on the original GPS string saves

us 52Bytes, which drops the size of one data set to only 185Bytes. Doing the math again we

should be able to store just around 1365 data sets equivalent to:

1365 · 33sec = 45045sec = 750.75min = 12.51h

A gain of more than 2.5 hours. This time can be grown easily by cutting some data that is

not quiet essential for the analysis of the the robot’s behavior. For the tests in Greenland the

datalogger might be available to store all this data, but just in case it is not ready the flash file

system might be a sufficient way to collect data from test runs of nearly one day. Or it can be

used as a spare system. Assuming that the navigation is working fine, there might be no need

to record all the navigation data or even no navigation data at all. Besides there is always the

possibility to send this data to the base station or operator and record it locally on the PC for

later analysis. This would allow for the storage of all interesting sensor data in the flash file

system, clearly arranged in different files for each kind of data.

The data we are recording is basically the same as which is sent back via the radio connection

when CoolRobot is following waypoints. We wanted to be able to record the navigation data

without the need for a radio link. Furthermore the file system offers the possibility to log

all other relevant data produced while CoolRobot is operating, like currents, wheel speeds,

tilt angles and so on, once the ADC is running. To keep all the collected data more concise

and make the analysis easier, different kinds of data can be stored to different logfiles. At the

moment there is only one logfile used to record the navigation data but as soon as the the new

6.1 Storage and retrieval of internal sensor data 107

analog to digital converter is running, there will be a demand to record motor currents while

the robot is running around. It would be easy to create a second logfile for all kinds of current

and voltage readings by just duplicating and slightly modifying existing code.

Instructions for setting up a file system in the flash memory using DynamicC are described

in detail in chapter7.1 and7.2. For the basic file related tasks, like reading from the file and

writing data to it some functions provided by DynamicC’s library "FS2.LIB" are essential.

fopen_rd(File, FileNumber)/fopen_wr(File, FileNumber) simply opens the specified file

either in read mode ("fopen_rd") or write mode ("fopen_wr"). A file cannot be opened for

both, reading and writing at the same time.

fseek(File, Where, Whence)is used to set the current read/write position of the file. The pa-

rameter "Whence" defines relative to which point of the file the position will be set: SEEK_SET

is relative to the beginning, SEEK_END to the end of the file, SEEK_CUR starts at the cur-

rent position and SEEK_RAW is a special case of seek end which allow to write data after the

end of the actual file. The parameter "Where" is used to add an positive of negative offset to

the position. For examplefseek(&testfile,10,SEEK_SET) will set the the read/write

position to the tenth byte of the file called testfile.

fread(File, Buffer, Length)/fwrite(File, Buffer, Length) are very similar in their use. Both

functions will read/write the number of bytes specified in "Length" from/to logfile to/from the

character buffer pointed to by "Buffer". The reading respectively writing starts at the position

set by "fseek()".

fclose(File)closes an opened file.

As an example, the following lines will open a file called "testfile" with the file name defined

in TEST_FILE_NAME, append the character string stored in the variablebuffer to the file

and close the file after writing.

fopen_rd(&testfile, TEST_FILE_NAME);
fseek(&testfile, 0, SEEK_END);
fwrite(&testfile, buffer, sizeof(buffer));
fclose(&testfile);

6.2 The Campbell CR5000 and CR1000 dataloggers 108

In the shown case, no error handling is performed, which means there is no guarantee that the

data was really written to the file. Error handling is pretty easy with those functions, since all

of them return integer values that indicate whether the operation was successful or not. Those

return codes can be stored to a arbitrary integer variable and checked using an if-statement.

rc = fopen_rd(&testfile, TEST_FILE_NAME)
if(rc == 0)
{

...

else
{

...

If "testfile" was opened successfullyrc will hold a zero and the code within the if-statement

will be executed. Otherwise the code within the else-statement, maybe some error handling or

just a prompt that an error occured, will be executed.

For further possibilities on using DynamicC’s flash file system the DynamicC user manual

chapter 11 is recommended as well as the DynamicC function reference for more detailed

information on all available functions.

6.2 The Campbell CR5000 and CR1000 dataloggers

All the digital data produced by the Jackrabbit’s control algorithm is not supposed to be stored

on a datalogger during the ongoing test runs for two reasons: first the CR1000 datalogger

which is supposed to be used has only just arrived and has not been tested in any way. And

second is the difficulty in communicating between Jackrabbit micro controller and available

CR5000 datalogger. Both units have the ability to exchange data via a RS232 serial port, but

the problem is it is unknown how the datalogger communicates exactly and what kind of

commands are needed to control it. There is software provided with the CR5000 datalogger

called PC9000 to control it via a personal computer furthermore an extensive manual which

describes how to handle and program the CR5000 but not one sentence about commands to

control it using a micro controller or something equal. It is not essential that the datalogger

6.2 The Campbell CR5000 and CR1000 dataloggers 109

can be controlled by the micro controller, but it would score a lot of benefits. It would achieve

the possibility to start, stop and run different recording programms on the datalogger during

one journey furthermore the communication and data exchange between micro controller and

datalogger should be much easier.

Figure 6.4: Screen shot of "Short Cut" first step: edit measurement interval

According to the datasheet of the CR1000 datalogger and its manual the serial communication

is supposed to be much easier in this product generation. Furthermore it is much easier to build

simple programs for sensor readings, since in addition to the "CRBasic" editor, also included

with the CR5000, there is a wizard program called "Short Cut" included with the CR1000s

"LoggerNet" software package. "CRBasic" is a "BASIC"-like programming language used to

create programs for the Campbell dataloggers.

6.2 The Campbell CR5000 and CR1000 dataloggers 110

Figure 6.5: Screen shot of "Short Cut" second step: choosing sensors

"Short Cut" allows to select the interval of the measurements, different sensors and the tables

the data should be stored to and "Short Cut" builds the program for the specified datalogger

type. This program file can be edited and extended afterwards using the "CRBasic" editor.

Thus, "Short Cut" makes it pretty easy to create routines for the basic measurements and also

collecting data from sensors using RS232 serial communication.

6.2 The Campbell CR5000 and CR1000 dataloggers 111

Figure 6.6: Screen shot of "Short Cut" third step: select tables

There are actually two possibilities to send and receive data via the serial port from within

a running program on the CR5000/CR1000. The first one is via a CAN-bus system which is

to difficult and extensive in code space to implement it on the CoolRobots micro controller

in addition to the existing software. Another way might be through two commands for input

from the CR1000s RS232 serial and input/output on the CS I/O port:

SerialInput (Dest, Max_Values, Termination_Char, FilterString)

The "SerialInput" instruction is used to measure a serial sensor connected to the datalogger’s

RS232 port. This instruction can be included within every cycle of the measurement program

to check for an input character string and store it to a predefined array if something is received.

The parameters of "SerialInput" are:

Dest - The Dest parameter is a variable array in which to store the values received from the

serial sensor. The array should be dimensioned to the size of Max_Values.

6.2 The Campbell CR5000 and CR1000 dataloggers 112

Max_Values - is the maximum number of characters that will be transmitted by the sensor

between the filter string and the termination character.

Termination_Char - is the character that will be used to mark the end of the transmitted

string. This number must be less than 128.

FilterString - is a string of characters used to mark the beginning of the data transmitted

from the serial sensor.

GOESData (ResultCode, Table, TableOption, BufferControl, DataFormat)

The "GOESData" instruction is intended to be used with a SAT HDR GOES satellite data

transmitter. The data transfer to the transmitter can occur via the datalogger’s CS I/O port

only. If the datalogger is sending a command, all further tasks will be executed only after

a response is received. The big problem with this instruction is that it uses the CS I/O port

instead of the RS232 port like "SerialInput" and it might block the measurement routine if

there is no answer to a command.

The "GOESData" instruction has the following parameters:

ResultCodeparameter is a variable that holds a result code indicating the success of the

program instruction. The result codes are as follows:

Code Description

0 Command executed successfully

2 Timed out waiting for STX character from transmitter after SDC addressing

3 Wrong character received after SDC addressing

4 Something other than ACK returned when select data buffer command was executed

5 Timed out waiting for ACK

6 CS I/O port not available

7 ACK not returned following data append or overwrite command

Table 6.1:Possible values for the ResultCode.

Table The Table parameter is the data table from which record(s) should be transmitted.

6.2 The Campbell CR5000 and CR1000 dataloggers 113

TableOption determines which records should be sent from the data table.

0 = send all records since last execution;

1 = send only the most recent record stored in the table.

BufferControl is used to specify whether the ramdom or self-timed buffer should be used

and whether data should be overwritten or appended to the existing data. The data stored

in the self-timed buffer is will be transmitted at a predetermined time frame only and the

data is erased from the transmitter buffer after each transmission. Data in the random

buffer is transmitted immediately after a threshold has been exceeded and the trans-

mission will be repeated randomly to insure it is received. Data in the random buffer

must be erased using buffer control, code 9, after random transmissions are finished. A

numeric value is entered for this parameter:

Code Description

0 Append to self-timed buffer

1 Overwrite self-timed buffer

2 Append to random buffer

3 Overwrite random buffer

9 Clear random buffer

Table 6.2:Possible values for BufferControl.

6.2 The Campbell CR5000 and CR1000 dataloggers 114

DataFormat is a numeric value used to define the format of the data sent to the transmitter.

Code Description

0 CSI FP2 data; 3 bytes per data point

1 Floating point ASCII; 7 bytes per data point

2 18-bit binary integer; 3 bytes per data point,

numbers to the right of the decimal are truncated

3 RAWS7; 7 possible data points for total rainfall,

wind speed, vector average wind direction, air temperature,

RH percentage, fuel stick temperature and battery voltage

4 Fixed decimal ASCII xxx.x

5 Fixed decimal ASCII xx.xx

6 Fixed decimal ASCII x.xxx

7 Fixed decimal ASCII xxx

8 Fixed decimal ASCII xxxxx

Table 6.3:Possible values for DataFormat.

Both commands are intended to be used with sensors that use serial communication to output

their measurement data. The problem herein is that the datalogger and micro controller are

not able to establish a real communication using those commands, there is no guarantee that

data is synchronized at the datalogger and is stored correctly. The other way around there

is no possibility to request a certain section of the stored data, since the datalogger is only

intended to controll sensors using its serial ports not the other way. Storing data from the

micro controller to the datalogger should not be a big issue using the "SerialInput" instruction.

The other way around I don’t see an obvious possibility to retrieve certain pieces of the earlier

stored data from the datalogger to pass it back to the operator via the radio link. The only

idea is to find out how exactly the datalogger is communicating with a personal computer and

imitate the PC’s behavior with the micro controller.

115

Chapter 7

Software frame work

The basic idea of CoolRobots Software is one superior main routine with a start up section

which is executed only once when the program is started and a big infinite loop that executes

all subordinated functions and algorithms according to the present demands pictured by the

sensors.

Figure 7.1: Rough schematic of CoolRobots software

What exactly is executed on every run through the loop depends on certain global variables

which can be changed by the functions that compute input data. Thus, on every cycle off the

7.1 Definitions, libraries and variable declarations 116

main loop the parameters are set for the next cycle. As shown in figure7.1 the main program

constist four major parts:

(1) The startup routine,

(2) a block for the modem input,

(3) the main control section

(4) and a block for the modem output.

The modem input/output blocks and the main controll section form the main loop of Cool-

Robots control program. The reason they are listed separately is they are separated within the

code too. They are all placed within their own "Costate" which allows those three tasks to

run seemingly parallel. DynamicC is capable of some kind of multithreading which they call

cooperative multi tasking.

"Cooperative multitasking is a way to perform several different tasks at virtu-

ally the same time. An example would be to step a machine through a sequence

of tasks and at the same time carry on a dialog with the operator via a keyboard

interface. Each separate task voluntarily surrenders its compute time when it does

not need to perform any more immediate activity."

They following sections will introduce the reader to the status quo of the CoolRobot main pro-

gram "mainprogV0.34" and the distinctions to other versions modified to fit different testing

requirements. The features of this program are fully implemented radio communication, data

recording capability within the flash memory and three fully functional drive modes available.

7.1 Definitions, libraries and variable declarations

To keep the program concise and straightforward, almost all of the functions Goetz and I

wrote for the control program are grouped together in libraries according to their field of

use. Furthermore some of the features, like the filesystem, used within the program are also

7.1 Definitions, libraries and variable declarations 117

provided in libraries with the DynamicC software. Those libraries must be included with the

program at the very beginning using the#use instruction and some global parameters must

be defined using#define .

#memmap xmem

#define FS2_USE_PROGRAM_FLASH 16
#define LX_2_USE fs_get_flash_lx()
#define MY_LS_SHIFT 9
#define LOG_FILE_NAME (1+LX_2_USE)

#define SPI_CLK_DIVISOR 10

#define EINBUFSIZE 511
#define EOUTBUFSIZE 511
#define CINBUFSIZE 255
#define COUTBUFSIZE 255

#use FS2.LIB
#use GPS.LIB
#use DRIVE.LIB
#use ANALOGIN.LIB
#use RADIOCOMM_E.LIB
#use NAVIGATE.LIB

The instruction#memmap xmemallows the use of extended memory (the upper 128kByte

of the first flash memory) as code space in addition to the regular code space (only the lower

128kByte of the first flash). This is necessary because the CoolRobot control program in its

final version exceeded a size of 128kBytes.

The first 4#define statements determine some parameters for the file system used.

FS2_USE_PROGRAM_FLASHreserves the specified amount of 4096Byte blocks of the first

flash for the file system. To use parts of the first flash for a file system in the "rabbitbios.c" file

XMEM_RESERVE_SIZE 0x0000Lmust be changed to for example to

XMEM_RESERVE_SIZE 0xF000Lto reserve some of the extended memory (0xF000L

equals 61440Bytes). This instruction was used with the Jackrabbit RCM3110 that only got

the first flash and is not essential anymore since on the RCM3100 256kBytes of second flash

are available. In the next line the function "fs_get_flash_lx()" is used to find out the logical ex-

tend number of the second flash and store it to the parameterLX_2_USE. The logical extend

is comparable to name or address of the memory device and in our caseLX_2_USE = 1,

since the second flash memory is detected as device number 1 (see Figure6.3). The param-

7.1 Definitions, libraries and variable declarations 118

eterMY_LS_SHIFT is used to determine the size of the logical sectors (LS) used in the file

system. The LS size got influence on the efficiency of the file system and maximum available

space (compare Figure6.3). This parameter can take values of2x Bytes. In our case the ex-

ponent is chosen to be 9, which equals a LS size of 1024Bytes and achieves most efficiency

for our file system. The last of those four lines defines a "file name" for our logfile. In FS2

the actual file names are numbers between 1 and 255. The file name for our logfile is set to

1+LX_2_USE = 2.

TheSPI_CLOCK_DIVISOR devides down the internal clock of the micro controller by the

specified factor (here: 10) for the use as serial I/O clock.

The next four lines only set the size of input and output buffers of the serial ports C and E.

The size must be defined to a value of2n−1 Bytes otherwise they are defaulted to 31Bytes

and a warning is displayed when compiling the program. For our application the buffer size

are quiet big with 511Bytes and 255Bytes because the serial inputs form the modem (serial

port E) and the GPS unit (serial port C) are character strings with sizes up to 256 characters

respectively around 100 characters.

The included libraries listed in the next 5 lines. Sometimes it is important to include the li-

braries in the right order, for example the libraries "NAVIGATE.LIB" and "RADIOCOMM_E"

are using the data structureGPSPosition which is defined in the "GPS.LIB". Thus it is im-

portant to include the "GPS.LIB" before the others are included, or the compiler will complain

about dozens of errors, because the data structure is used before it is defined. A complete list

of the used libraries and the functions they provide can be found in appendixA TableA.1.

const char wp_string[] = "$CRWPT,3,4336.6000N07207.8000W,
4336.9600N07208.0400W,
4336.4800N7207.3800W";
const int motor_speed_increment = 10;
const int angle = 20;
char in_string[256];
char buffer[256];
char buf[1024];
char out_string[256];
char in_stri[128];
GPSPosition wayp;
GPSPosition test_point;
GPSPosition wp_list[100];
File logfile;

7.2 Start up sequence: initializing of variables, file system and serial ports 119

int wp_count;
int wp_active;
int wp_rcvd;
int wp_start;
int drive_mode;
int status_modem;
int send_event;
int motor_speed[4];
int lp_count;
int tm_count;
int FSrc;
float dis_bp;

This part of the code declares all the global variables used within the program. Global vari-

ables can be read and changed by every function within the program. Thus it is possible to pass

values back and forth between functions called either libraries or the main routine. A good ex-

ample for such a variable is the integerdrive_mode . It is used within the main routine to

switch between the different drive modes, for exampledrive_mode = 1 will run the algo-

rithm for the drive mode waypoint following at full speed. The variable can be changed within

the algorithm of one drive mode to exit it and enter another drive mode on the next cycle, or

it can be changed by the function that computes the modem input if the command for certain

drive mode is received. For example "$CRCMDMANDM" will setdrive_mode = 5 and

the manual drive mode will be entered on the next cycle. The purpose of almost all global

variables is described within a comment next to the variable in the actual code of the "MAIN-

PROGV0.34.C".

7.2 Start up sequence: initializing of variables, file system

and serial ports

The program itself starts with thevoid main() { statement and the first things we need to

do before any function is called is an initialization of the variables. This is necessary because

with the declaration of a variable only an logical address is associated with the variable name,

but the actual memory at the given address is not formated, so the data of an earlier program

still exists and fills the variable with unknown values. Therefore all variables should be set to

a discrete value before they are used by any function. Of special importance is for example

7.2 Start up sequence: initializing of variables, file system and serial ports 120

the setting of the motor speeds and the sending to the motor controllers using the function

"UpdateMotorOutput()".

void main()
{

status_modem = 0;
wp_active = 0;
wp_count = 0;
wp_rcvd = 0;
wp_start = 0;
send_event = 0;
tm_count = 0;
drive_mode = 5;
dis_bp = 0.1;

motor_speed[0] = 0;
motor_speed[1] = 0;
motor_speed[2] = 0;
motor_speed[3] = 0;
UpdateMotorOutput();

str2wayp(wp_string, &test_point);

memset(buffer, 0x00, sizeof(buffer));
memset(in_string, 0x00, sizeof(in_string));

Another important part is the handling of the waypoints for the navigation algorithm. The

waypoints for the CoolRobot consist of GPS coordinates in the structure GPSPosition, which

is defined in GPS.LIB. To store a bunch of waypoints for a complete trip there is an array

of GPSPosition structures calledwp_list and it can hold up to 100 waypoints. The func-

tion "str2wayp(*char, GPSPosition)" is a helper function to translate a character string of a

certain shape (see section5.3.4) into waypoints of type GPSPosition and stores them into

thewp_list . The&test_point GPSPosition is only some used to temporarily store the

waypoint data before it is written to thewp_list . To keep track of the number of waypoints

stored and which waypoint the robot is actually heading to two integer variables are used.

The firstwp_count holds the total number of waypoints stored withinwp_list and the

second onewp_active indicates the waypoint actually heading to. It is important to know

thatwp_active starts counting from 0. So number 0 is the first way point, number 1 is the

second and so on.

7.2 Start up sequence: initializing of variables, file system and serial ports 121

The drive mode is initially set to manual drive mode (drive_mode = 5), the status of the

modem is determined as "off" (status_modem = 0) andsend_event = 0 represents

"nothing to send".

Command Value Meaning

status_modem 0 modem off

1 modem on, disconnected

2 modem on, connected to remote host

drive_mode 1 waypoint following full speed

2 waypoint following partial speed

3 "got stuck" mode

5 manual drive mode

send_event 0 nothing to send

1 number of waypoints succesful received

3 answer to status request

4 answer to data request

5 send back navigation data

Table 7.1:Overview of status variables.

The following section deals with the initialization of the filesystem and the creation of the

logfile. The first piece of code only checks if the storage device defined inLX_2_USEis

available. If not the program will be terminated with exit code 1.

if (!LX_2_USE)
{

printf("The specified device (logic extent #%d)
does not exist. Change LX_2_USE.\n",(int)LX_2_USE);
exit(1);
}
else

{
printf("Using device logic extent (LX) #%d.\n",
(int)LX_2_USE);

}

Now the filesystem will be initialized using the function "fs_init(0, 0). The first parameters for

this function must be zero and the second one is ignored anyway, thus they don’t change any-

thing. If the file system could not be intialized for any reason the program will be terminated

with exit code 2.

7.2 Start up sequence: initializing of variables, file system and serial ports 122

FSrc = fs_init(0,0);
if (FSrc)

{
printf("Could not initialize filesystem, error number %d\n", errno);
exit(2);
}

After the successful initialization the file system can be formated using "lx_format(LXnum,

wearlevel) or an existing file system can be reused. If any error occures the program will be

terminated with exit code 3. If no errors occur the memory of the logic extend is printed.

printf("Do you want to:\n");
printf(" <enter> Re-use existing filesystem -or-\n");
printf(" F <enter> Format the filesystem LX?\n");
gets(buf);

if (toupper(buf[0]) == ’F’)
{

FSrc = lx_format(LX_2_USE, 0);
if (FSrc)

{
printf("Format failed, error code %d\n", errno);
exit(3);
}
}

printf("Capacity of LX #%d is approximately %ld bytes\n",
(int)LX_2_USE, fs_get_lx_size(LX_2_USE, 0, 0));

The last step is to create a file using function "fcreate(File, FileNumber)". If the error "File

exists is returned the program will ask the user whether the old file should be deleted and a

new file created or if the old file should be kept and the new data appended to the existing

file. In case of appending the new data to the existing file the program will ask for a separator,

which makes it easier to distinguish data of different test runs from each other.

fs_set_lx(LX_2_USE, LX_2_USE);
FSrc = fcreate(&logfile, LOG_FILE_NAME);

if (FSrc && errno == EEXIST)
{

printf("Logfile %d already exists.\n",
(int)LOG_FILE_NAME);

printf("Delete existing file or apend new
data to old file?\n\n DELETE? (y/n)\n");

gets(buf);
if (toupper(buf[0]) == ’Y’)

7.2 Start up sequence: initializing of variables, file system and serial ports 123

{
fdelete(LOG_FILE_NAME);
FSrc = fcreate(&logfile, LOG_FILE_NAME);
}
else
{

printf("Type some seperator:\n");
gets(buf);
buf[strlen(buf)] = ’\n’;
buf[strlen(buf)] = ’\0’;

FSrc = fopen_wr(&logfile, LOG_FILE_NAME);
fseek(&logfile,0,SEEK_END);
fwrite(&logfile,buf,strlen(buf));

}
}

The error checks always works the same way, all functions used to perform file operations

return specific error codes, which are stored in the integer variableFSrc . After the execution

of a function the return code is interpreted by a "if"-statement. If an error occurred while

creating the new file respectively writing the separator to the existing file the program will

be terminated with exit code 4. If everything was allright, the file is closed and from now on

available for data storage.

if (FSrc)
{

printf("Couldn’t create/open file %d: errno = %d\n",
(int)LOG_FILE_NAME, errno);
exit(4);
}

fclose(&logfile);

The last part of the start up section opens the serial ports C and E that are used for data

exchange with the radio modem and the GPS unit. The ports are opened using the function

"serXopen(Baudrate)" where X can be a letter from A to F for the 6 available serial ports. Af-

ter opening the ports the read and write buffers of each serial port are cleared using "serXwr-

Flush()" and "serXrdFlush()". The last few lines represent a test output to the radio modem

using "cof_serEputs(*char)", a simple cofunction to output character strings to a serial port.

This is used to check if the modem is on or not. If it is on it will respond with an output

that indicates that it can not understand the entered command. This answer is received and

interpreted by the modem input routine which setsstatus_modem = 1 for modem on.

7.3 The main loop 124

serEopen(9600);
serEwrFlush();
serErdFlush();
serCopen(4800);
serCwrFlush();
serCrdFlush();

costate
{

wfd cof_serEputs("modem test\r");
}

7.3 The main loop

The main loop is the heart of the control software since it is the part that is executed all the

time when the micro controller is running. The infinite loop itself is started by a "while(1) ...

" statement. Everything within the curly brackets is executed repeatedly as long as the value

given in the round brackets is different for zero.

7.3.1 The modem input block

The modem input block is the smallest section of the main loop and it only purpose is listening

for incoming character strings from serial port E. This purpose is served by the cofunction

"cof_serEgets(destinantion, maxCharacters, timeout)". It is waiting for characters received on

the serial port and reads them to the variable specified as destination until a carriage return,

line feed or NULL character is received or the the specified timeout is reached between two

characters. This function is located in an own costate because it blocks all other code within

this costate following after this function until it receives a string and returns from execution.

If no string is received the function will not return and no other code within this costate will

be executed. As described at the beginning of this chapter, different costates are executed

seemingly simultaneous because they share execution time. If one costate is inactive because

its is waiting for something to do like the "cof_serEgets" wait for an incoming string the next

costate will get the available execution time. And so on, until the end of the loop is reached

and the first costate is executed again. All cofunctions must be called from a "waitfordone"

7.3 The main loop 125

(wfd) statement because the execution will restart at the "waitfor" or "wfd" statement it was

transfered to the next costate.

while(1)
{

costate
{

wfd cof_serEgets(buffer, sizeof(buffer) - 2, 500);
if(strlen(buffer) != 0)
{

memcpy(in_string, buffer, sizeof(buffer));
termStr(in_string);
memset(buffer, 0x00, sizeof(buffer));
printf("%s\n",in_string);

} // end if
} // end costate

As soon as the cofunction returns it is verified that there is actually something received and

buffer is not empty. If there is a non-zero string received it will be copied to the variable

in_string and then terminated with a carriage return character and a zero character using

the helper function "termStr(*char)". After thisbuffer is flushed and the received string is

printed to the "Studio" window if the micro controller is connected to a PC and the DynamicC

compiler. At the moment almost all important data is printed to the "Studio" window just to

be able to keep track of what is going on with the program if desired.

7.3.2 The main control block

The costate for the main control block starts with the function "processModemStr(*char)".

This function analyzes the character arrayin_string , which contains the a string received

from the modem if there was one received. The first action is a check if there is actually

a string stored inin_string if not the function returns immediately, the second action

is cleaning the string of leading line feeds and "cmd:" prompts using the helper function

"clearString(*char)". The function detects if the modem is on, a connection is established or

lost and sets the variablesstatus_modem to the equivalent value (see Table7.1). Further-

more it processes incoming commands, like switching drive modes, status and data requests

or new waypoints. The variablesdrive_mode andsend_event are set by this function

according to the incoming command line and waypoints are stored in thewp_list using the

7.3 The main loop 126

function "str2wayp(*char, GPSPostion)". All incoming strings that are neither waypoints nor

a command or a modem output are ignored, since they are either unimportant or a drive string

for the manual drive mode. For more detailed information on this function see the commented

code of library "RADIOCOMM_E.LIB".

costate
{

processModemStr(in_string);
if(status_modem == 2)
{

switch(drive_mode)
{

case 1: wp_follow_full();
break;

case 2: wp_follow_partial();
break;

case 3: got_stuck(in_string);
break;

case 5: if(strlen(in_string) != 0)
{
manual_drive(in_string);

}
break;

default: break;
}

}
memset(in_string, 0x00, sizeof(in_string));

}

After analyzing the modem input the actual drive mode is entered but only if there is an active

radio connection to the base station (status_modem == 2), otherwise no drive mode will

be entered and the robot remains inactive. Which drive mode is executed depends of the value

of the variabledrive_mode . A switch-case statement selects the drive mode according to

the integer valuedrive_mode carries. The default case is only existent to trap a runtime

error if drive_mode is for any reason not holding one of the valid values. Important is the

"break" keyword at the end of every "case" section, since this keyword performs a jump out

of the switch-case statement. If "break" is missing the following case will also be executed,

which might lead to fatal errors. The different drive modes are introduced in detail in chapter

4.4. At the end of this piece of code thein_string is flushed to prevent the execution of

the same command a second time. This would be fatal, especially in manual drive mode, since

the last drive string would be used again and again until a new one is received.

7.3 The main loop 127

7.3.3 The modem output block

The modem output section is quite similar to the main control section, since its main part

is also a switch-case-statement that selects what kind of data is sent to the base station if

an active radio connection is detected. The principle is the same as with switching the drive

modes: depending on the integer valuesend_event holds one of at the moment four avail-

able routines for the output is executed. Case one is activated if a number of waypoints is

received and stored towp_list . The function "str2wayp(*char, GPSPosition)" increments

the variablewp_rcvd by one for every waypoint that is stored successfully and initializes the

answer by settingsend_event = 1 . The function "sprintf(*char, *char format, parameters

...)" fills a formated string pointed to by format with the given parameters and writes it to a

specified character array. In the first case,out_string is filled with the string "%d way-

points received", where %d is replace by the value stored inwp_rcvd . Theout_string

is sent using "cof_serEputs(*char)" as descirbed earlier. Case 3, the answer to a status re-

quest, is basically the same, except another format string and four parameters instead of one.

Case 5 can be used by different functions the only have to write whatever they want to send

to out_string and setsend_event = 5 . At this point of the development this case is

used to send all the navigation data produced in the library "NAVIGATE.LIB" once every nav-

igation step. The remaining case 4, the answer to a data request is a little more complex, since

it does not only send a fixed string. It will try to open the logfile and read the last 32Bytes

of data back to send them back. If there is no actual logfile existing it will encounter an error

while opening the file and answer to the request with the sentence "could not open logfile"

instead of the last 32 stored Bytes. If the file is opened successfully but there is no data to read,

or less than 32Bytes the answer will be "no data found". An important thing detail is the reset

of send_event to zero at the end of every case. If this reset is missing the same data will

be sent over and over again in pretty short interval, which might "jam" the radio connection,

due to more traffic the given bandwidth can handle.

costate
{

if(status_modem == 2)
{

switch(send_event)
{

case 1: sprintf(out_string,"%d waypoints received\n\r",wp_rcvd);

7.3 The main loop 128

wfd cof_serEputs(out_string);
wp_rcvd = 0;
send_event = 0;
break;

case 3: sprintf(out_string,"DrMode=%d;MotSpeedA=%dB=%dC=%dD=%d;
...\n\r",drive_mode,motor_speed[0],motor_speed[1],
motor_speed[2],motor_speed[3]);

wfd cof_serEputs(out_string);
send_event = 0;
break;

case 4: FSrc = fopen_rd(&logfile, LOG_FILE_NAME);
if(FSrc == 0)
{

fseek(&logfile, -32, SEEK_END);
FSrc = fread(&logfile, buf, 32);
if(FSrc == 32)
{

fclose(&logfile);
sprintf(out_string, "last 32 bytes of

logfile: %s \n\r", buf);
wfd cof_serEputs(out_string);

}
else
{

wfd cof_serEputs("no data found\n\r");
}

}
else
{

wfd cof_serEputs("could not open logfile\n\r");
}
send_event = 0;
break;

case 5: wfd cof_serEputs(out_string);
send_event = 0;
break;

default: break;
}

In addition to the switch-case-statement there is a short piece of code within an if-statement

which is only active in manual drive mode. The first line is just a time delay of ten seconds

using the keywordwaitfor in combination with the delay function "DelaySec()" which

returns a zero until the specified time is elaped. As long aswaitfor receives a zero the

execution will jump out of the costate and the next time execution hits this costate it will

directly jump to thewaitfor , ignoring the code beforehand. This means in manual drive

mode, all answering function within the switch case statement are disabled. If there is a need

for other answers the whole if-statement can be moved into an own costate after this costate.

Only the line "memset(outstring,...)" should be added to this costate too, to avoid problems

7.3 The main loop 129

when filling theout_string again.

if(drive_mode == 5)
{

waitfor(DelaySec(10));
sprintf(out_string,"A:%dB:%dC:%dD:%d\n\r",motor_speed[0],

motor_speed[1],motor_speed[2],motor_speed[3]);
wfd cof_serEputs(out_string);

}
}

The last part of the modem output section is not used to send actual data back to the remote

station, but to try to connect to this station, as soon as a "modem on" is detected. There-

fore this part is not enclosed in the bigif(status_modem == 2) statement, it has its

own elseif-statement to detect if the modem is on, but not connected (status_modem = 1). In

this case the command to connect to the base station is passed to the modem just once, the

modem will then try to reach the station carrying the callsign "GOEK" for round about 50

seconds. Limitation to one attempt is made by the second if statement and the counter vari-

abletm_count . If the modem should try connect for a longer time this part must be changed

slightly. if(tm_count == 0) must be changed to something likeif(tm_count <= x)

and awaitfor(DelaySec(y)) should be added in front of thewfd with y somewhere

above 50 seconds. The robot will then try to connect for x times and the overall time for the

connection attempt is simplyx · y.

else if(status_modem == 1)
{

if(tm_count == 0)
{

wfd cof_serEputs("connect goek\r");
tm_count++;

}
}
memset(out_string, 0x00, sizeof(out_string));

}
}

}

7.4 Different versions of the main programm 130

7.4 Different versions of the main programm

The main program as it is described in this chapter, is only one of a number of different ver-

sions and varieties derived from this version. The visualized "mainprogV0.34" combines al-

most all advances yet made, except the capability of measuring and storing currents. Although

the required software is written it is not implemented in this code, because of continuous prob-

lems with the MAXIM analog to digital converter.

As mentioned earlier (chapter5.3.1), the "mainprogV0.34" depends on a active radio con-

nection, nothing will happen without being connected. On the other hand, if the connection

is lost for some reason the robot will stop whatever it is doing and remain inactive until it

detects a connection again. For longterm tests with the navigation algorithm, where is no need

to keep track of the navigation while it is running and only the analysis of the data after the

run is important, I changed the existing main program so that it is not as addicted to the radio

connection any more.

7.4 Different versions of the main programm 131

Figure 7.2: Flow chart of "mainprogV0.34"

The "mainprogV0.35" has basically all the same features as "mainprogV0.34", like data record-

ing in flash memory, the three drive modes and full radio communication capability. The robot

will still be running only if the modem is on, but there is no need for an active radio link. As

soon as the program is compiled, the settings for the file system are made and the modem is

detected "on", the robot will switch to waypoint following at full speed and start navigating

towards its first waypoint. It will try to connect to the base for about one minute and if the

connection is successful, the navigation data will be send back to the base in addition to the

7.4 Different versions of the main programm 132

storage in flash memory. If it can’t connect it will go on with its navigation, and listen for

an incoming connection request. As soon as a connection is detected navigation data is sent

back and the robot can be controlled as with the "mainprogV0.34". If the connection is lost

or terminated again CoolRobot will go on with navigating, if it was operating in one of the

waypoint following drive modes. If the connection is lost in manual drive mode it will reside

in this mode but stop the motors, just to prevent uncontrolled driving.

Another slightly different version is called "mainprogV0.24", it is basically exact the same

main routine as in "mainprogV0.34", only the ability to store data on the internal flash memory

is missing. It is designed for the use with the "smaller" Jackrabbit, which only has 256kBytes

of flash memory - not enough to implement a sufficient file system to store serious amounts

of test data. All other function are the same, with the tiny difference that no data from the

logfile will be sent back on a data request, since there is no actual logfile existent. The answer

is always "no data found". To run this variant of the main routine a small change in the code

of "NAVIGATE.LIB" must be performed. Lines where the navigation data is written to the

logfile (lines 167-170) must be commented out using either "//" at the beginning of every line

or enclose the four lines in "/* ... */".

7.4 Different versions of the main programm 133

Figure 7.3: Flow chart of "mainprogV0.35"

All three versions of the software have been tested, some more and some less. They are all

running the way they were supposed to without any runtime or system errors. The first tests

were executed using slightly different software, because the development and improvment

was still ongoing. As soon as the Jackrabbit core module with the larger memory arrived we

did a couple of test runs with the "mainprogV0.34" and few with version 0.35. Unfortunately

this core module as well as the evaluation board fell prey to a short circuit and we had to

order a new one which only just arrived. Thus, the testing meanwhile had to happen with the

7.4 Different versions of the main programm 134

"smaller" micro controller and without the ability to store data locally on the controller, which

forced us to use a main routine without the file system feature, version 0.24.

135

Chapter 8

Results of the moving tests

8.1 GPS waypoint following position and navigation data

During the processing of the navigation algorithm, several errors and bugs occured. Dynamic

C has an error handler, which can be programmed and adjusted for the special needs of the

Cool Robots project, but that is a great piece of work. The original error handler manages

how to handle the errors as for example a calculation ofarccos(2). These errors have to

be excluded. If one of these errors occurs, dynamic C jumps out of the program at the place

where the error occurred without proceeding in the program. That made the Cool Robot drive

on with the motor speeds set before that error (in most cases 100%). The robot is now OUT

OF CONTROL until the whole program is recompiled. To debug the error, the Laptop has

to be connected to the Jackrabbit with the programming cable. Recompiling the navigation

program while running behind the robot with the laptop on one arm is not easy. So I made

different steps in testing the navigation algorithm and the drive modes "wp_follow_full" and

"wp_follow_partial". At first I navigated with the laptop connected to the programming port

while driving around in the car. The problems appearing with the infinitesimal distance be-

tween the two navigation points were solved by using the "_double precision" library. To

check the reliability, I wanted to run the navigation algorithm for hours before taking the

robot out. One main field of major interest was the ability of the Cool Robot to climb sastrugi

features and even whole sastrugi fields. Therefor the robot was driven in the manual drive

8.1 GPS waypoint following position and navigation data 136

mode to the selected features.

Figure 8.1: Cool Robot navigating to a waypoint on lake mascoma

For the testing of the waypoint following drive mode, we took the robot out on lake mascoma

near Lebanon (Figure8.1). The lake was frozen and covered with at least 45 cm of ice. That

provided us the opportunity to drive on the lake with the car and stay within the visibility

range to the robot and control it if necessary through the radio communication. This chapter

describes the testing itself. The necessary preparations, the startup routine and especially the

reading and interpretation of the feedback data will be discussed.

8.1.1 Autonomous waypoint following at full speed

The robot is transported without any power supply. Once at the testing area, the batteries and

the main housekeeping power distribution board are connected first. Then the jackrabbit, the

GPS-receiver and the modem are connected. Before suppling the DAC make sure the output

channels are not connected to the motor controllers because they are at -2.9 V if they were shut

off from power. The main program may be compiled to the jackrabbit at that point. The motor

8.1 GPS waypoint following position and navigation data 137

speeds are set to zero and are connected to the motor controllers. If both modems are powered

up, they will connect autonomously. The connection to the jackrabbit is closed and the modem

is connected to the serial port or an alternative port (e.g. USB) and accessed through "Hyper

Terminal" (see chapter5.3.3). The robot can now be controlled through the keypad as it is in

drive mode "manual operator". To switch to waypoint following drive mode, the motor speeds

must be set to zero and "p" has to be hit. Cool Robot now starts to navigate as described in

chapter4.4.1.

FigureB.1 shows a picture of the data evaluation with excel. The test consists of two loops

following the four waypoints. The parameters for the navigation algorithm were set to

wp_range 0.025

bp_range 0.030

tm_nav 15

dis_bp 0.1

Table 8.1:Parameters for waypoint following at full speed 22 mar.

The Cool Robot had connection to the laptop via radio communication. The data string sent

back to the user after completion of a navigation cycle consists the active waypoint, the bas-

ing point headed to, the current points and information about all the different distances and

bearings. Logged as one string for each cycle in the editor, the data can be imported in excel

easily by dividing the different values with a "," and a ":". To graph the position data in a

diagram, the longitude and latitude have to be converted. This means, if the latitude direction

is "S" or the longitude direction is "W" the value has to be multiplied by -1. Another fact that

has to be taken into account is, that each position data from the jackrabbit is of the structure

"GPSPosition". The degrees are an integer value and the minutes are a float value. If the min-

utes are≤ 9, dynamic C is not able to display the leading zero and appends the second digit

directly onto the integer degree. A longitude of "7209.3600,W" (ddmm.mmmm) for example

is displayed as "729.3600".

The sample test for FigureB.1was taken on March 22nd on lake mascoma. Two different

loops were performed, to compare the track from the first to the second run. The first run is

indicated with "_a" and the second with "_b". The distance two the first waypoint varies and

8.1 GPS waypoint following position and navigation data 138

depends on the starting point. The distances between the other waypoints and the bearings are

given in Table8.2.

distance bearing

wp1,wp2 586 m 124.6◦

wp2,wp3 642 m 210.0◦

wp3,wp4 522 m 309.6◦

Table 8.2:Distances and bearings for the waypoints "lake mascoma bridge".

The distances between the basing points is calculated by the distance between two waypoints.

The desired distance between the basing points was about 100 m and the real distance is

calculated by

bp(i),bp(i + 1) =
wp(i),wp(i + 1)

integer(wp(i),wp(i+1) m
100 m

)

for waypoint1 and waypoint2 it is

bp(i),bp(i + 1) =
586 m

integer(586 m
100 m

)
=

586

5
·m = 117.2 m

That guarantees the last basing point will coincide with the waypoint. In this test, I tried to

generate each basing point from the current point while within the range to a waypoint or a

basing point. One can see, that the basing points are perfectly positioned if the robot is on the

track between the waypoints, but if he is off from the track, the next basing point will be off

the track the same distance. So for the next test, I generated the basing points on the track

between the two waypoints.

In this first test, the distances between the basing points were also not the same, because I

calculated them from the current point within the range of the last basing point. I corrected

that and the basing points are in the same distances.

8.1 GPS waypoint following position and navigation data 139

The basing points outlined in the circles A, B, C, and D were generated unnecessarily. How-

ever the Cool Robot did not head for them, so they had no impact on the traveled path.

The two strange bends were caused by a wrong bearing calculation. The current bearing was

calculated to 270◦ instead of 180◦, so the robot made a left turn to get on its course again after

recognizing to be off course again at the next navigation cycle. I corrected that.

Figure 8.2: Navigation routine at startup

Figure8.2 shows the startup for the second loop. Starting with the position determination at

point 1, the robot drives straight ahead without a course correction. After the time between

navigation cycles ("tm_nav") which was set to 15 seconds, the robot determines the current

position[1] and calculates the first current bearing to 313◦. At that point the bearing to the

first basing point is 48◦. A calculated off bearing of48◦ + 360◦ − 313◦ = 95◦ leads to a

right turn. In the drive mode "wp_follow_full" the motors on the right side are set to 90% to

process a wide turn. After completing the course correction, current position[2] for the next

navigation cycle is taken. Then the robot drives straight forward again at full speed for the next

15 seconds and determines current position[1] and the current bearing for the last 15 seconds.

After completing the second course correction the off bearing for the next navigation cycle is

at -25◦. Due to the demanding terrain, the robot could not drive straight ahead. So the next

course correction is 23◦. After four course corrections, the off bearing is within a±10◦ range

and the robot will not make any further major corrections.

8.1 GPS waypoint following position and navigation data 140

Figure 8.3: Waypoint and basing point shifting sample

Figure8.3 shows an example waypoint shift from the test. The robot travels on the path fol-

lowing the basing point. As the last basing point is the waypoint, the algorithm recognizes that

and heads for the waypoint instead of the basing point. As the range for generating the next

basing point is larger than the range for activating the next waypoint, the algorithm generates

one basing point more in the direction of the last waypoint, but does not head towards it.

The next test shown in FigureB.2 was made with some different parameters set as shown in

Table8.3.

wp_range 0.030

bp_range 0.045

tm_nav 15

dis_bp 0.5

Table 8.3:Parameters for waypoint following at full speed 24 mar.

The generated basing points coincide with the waypoints, because the calculation of the dis-

tance between basing points was set to 500 m and the distances between the waypoints were

≤ 1000 · m (see Table8.2). The error here was that the basing point was calculated from

the current point which was within the range of the waypoint, but with the distance and the

bearing between the waypoints so the basing point is calculated with a small offset which has

been corrected. However there is again no effect on the navigation of the Cool Robot, because

8.1 GPS waypoint following position and navigation data 141

it heads to the waypoint as it has a higher priority.

Comparing the two tests I had a close look at the bearings and the course corrections the Cool

Robot had to perform.

Figure 8.4: Off bearing with basing points every 100 m

Figure 8.5: Off bearing with basing points every 500 m

In Figure8.5 the three 90 degrees course changes after heading to a new waypoint are rep-

resented by the the peaks in the graph. It takes one course correction to get back on the new

desired course and the off bearing stays within a range of± 20 degrees. Figure8.4 shows

8.1 GPS waypoint following position and navigation data 142

the two loops, but the peaks from activating the next waypoint are not evident. It is obvious

that the Cool Robot does make more course corrections if generating basing points every 100

m than every 500 m. It starts with a distance of about 100 m to a basing point where the off

bearing is small, but the closer the robot gets to the basing point, the larger gets the off bear-

ing, because the offset from track is greater compared to the distance to the basing point. By

making more course corrections, the open loop course correction gets more imprecise and the

traveled track is getting longer compared to the perfect shortest track between the waypoints.

Table8.4shows the calculated distances for the shortest track, the traveled path and the addi-

tional track traveled for making the course corrections.

22 mar 24 mar

perfect track 4370 m 2194 m

traveled path 5131 m 2258 m

additional distance 760 m 64 m

percentage 17.4 2.9

Table 8.4:Overview of distances.

The perfect track is calculated between the starting point, waypoint1, waypoint2, waypoint3

and waypoint4. For the test on mar 22nd, the distance is larger because two loops were per-

formed. The length of the traveled path was calculated with

Xtravel =

wp4∑
i=0

currentdistance(i) +

wp4∑
i=0

turningdistance

whereas the turning distance is

Xturn = offbearing [◦] · 300

1000
·
[sec

◦

]
· 1.3

[m

sec

]

I also calculated the false bearing in the first test out to have a stronger conclusion for the

distance between the basing points. The test with a distance of 100 m between the basing

points is not acceptable. A 17.4% deviation of the track compared to the perfect connection

8.2 Overall energy consumption on snow 143

between the waypoints is too much. The second case with a distance of 500 m or more between

the basing points is within a good range. With a total track length of 500 km, the robot would

travel 515 km which is equal to 103%. Further testing with varying parameters in Greenland

has to evaluate the best navigation behavior.

The opposite is, that the offset from track is within a small range while heading for the basing

points in a small distance, but as seen in FigureB.2 is the offset from track within the range

of 20 m, controlled in the "navigate.lib".

8.2 Overall energy consumption on snow

The overall energy consumption on snow is basically the same as the energy consumption of

the motors. The Jackrabbit and the peripheral parts draw only currents in the range of milli

amperes. The following current data was taken on the golf course of Dartmouth College on

february 18th which was a test with the16 inch tires on it! The sun was shining and the

temperature was 34 F (1◦C).

Figure 8.6: Current draw data on snow

8.3 Rolling resistance 144

The snow was already a few days old and was pretty firm. A lot of footprints had been made

and the terrain was demanding. Viewing the different motor currents, one can tell very pre-

cisely what the current torque output for each wheel is. The overall mean current for all four

wheels is 1.66 ampere. That would lead in an energy consumption of

Edrive = Iall · Usupply = (1.66 · 48) W = 79.68 W (8.1)

for the propulsion on flat terrain.

8.3 Rolling resistance

For the 16 inch tires, I took some current measurements for all wheels in different conditions.

The total weight of the Cool Robot at that point was 82 lbs (38 kg). The temperature for

the hard surface data was 25 F (-4◦C) and the temperature for the high centered data was

70 F (21◦C). The different values for the test data used to calculate the rolling resistance are

outlined below.

Current mean value while high centered on a box:Iair = 1.151 · amp

Current mean value on hard surface (pavement):Iroll = 1.278 · amp

Torque constant for the motor (±10%: KT = 0.095 · N ·m
amp

radius of the 16 inch tires: r = 7.5 · inch = 0.1905 ·m

transmission ratio (efficiency included): tr = 100 · 90% = 0.9

The surface rolling resistance then is calculated as

FR =
T · tr

r
=

(Iroll − Iair) ·KT · tr
r

8.4 Radio Interface and Communication 145

FR =
(1.278− 1.151) · amp · 0.095 · N ·m

amp
· 90

0.1905 ·m
= 5.83 N (8.2)

The internal rolling resistance is

FI =
TI · tr

r
=

Iair ·KT · tr
r

=
1.151 · amp · 0.095 · N ·m

amp
· 90

0.1905 ·m
= 51.66 N (8.3)

Finally, the total rolling resistance is calculated as the sum of the internal rolling resistance

and the surface rolling resistance. With a total weight of 82 lbs it is

Froll = RR + FI = 5.83 N + 51.66 N = 57.49 N (8.4)

Guido and Gunnar measured a no-load current for a single motor of 0.272 A, which accounts

for 1.088 ampere of the high centered current [4]. With the 1.151 ampere I measured on the

box the bearing losses are calculated as

Lbearing [%] =
(Iair − Ino load)

Iair

· 100% = 5.47 % (8.5)

of the internal resistance which is great.

8.4 Radio Interface and Communication

To sum up to the overall performance of the actual radio communication system: it is running

well. In all different variants of the CoolRobots main program the radio connection is one

major part and it is performing absolutely trouble-free, especially using the new ICOM 4088

radio. When running the system with the older, cheaper Cobra radios we encountered some

8.4 Radio Interface and Communication 146

problems with the reliability of the system. Major issues were bad connections within the

microphone and speaker jacks of the Cobra radios, as well as a low transmission quality and

therefore a fairly short range of operation. Especially when the batteries of the radios were low

problems occurred, because the radios did not stop to broadcast, and even though the push-

to-talk was released by the radio modems they went on broadcasting. This effect jammed

the radio connection and data could not be sent any more. The first tests on Mascoma Lake

showed that the software for the communication system itself is running, but communication

itself was fairly unstable due to the weak radio connection. The maximum range of operation

only was approximately 300 meters in a really flat environment without any obstacles and on

a clear day.

When switching to the new radios these problems disappeared and we were able to run the

robot easily in manual drive mode as well as in waypoint following at full speed. In the first

place we were a little bit concerned about the large amount of navigation data in combination

with the low bandwidth (1200bit/s) of the radio link. But this worked out just fine, since the

navigation algorithm takes about 30 seconds for each cycle, there is enough time to transmit

even the big set navigation data. Sending one set of the navigation data takes all in all ap-

proximately 3 to 4 seconds. When running in manual drive mode most of the time there is

not a really significant delay between sending a command from the Hyperterminal window

until it is executed by the robot. In most cases this is not perceptible, only when trying to

send a command while the robot is sending back its actual motor speeds or when sending two

commands back-to-back it may take up to 3 seconds until the command is executed, because

the first transmission blocks the channel for a certain time and only after this data exchange is

finished the next packet of data can be transmitted. Therefore it is more effective to send one

longer drive string rather then sending character by character. In order to find out what the

maximum range of operation is like, we started the robot navigating to a waypoint 3km down

the lake and watched the incoming navigation data until the connection was lost and no more

data was received. Taking the last GPS position received from the robot and the GPS position

of the car (see Figure8.7), where the robot started, we calculated a distance of slightly above

1200 meters. Nearly four times the range achieved with the Cobra radios.

8.4 Radio Interface and Communication 147

Figure 8.7: Screen shot of "mapquest.com" showing the starting point and the point the

last transmission was received before losing connection

We were running several tests with the navigation algorithm on Mascoma Lake always get-

ting all navigation data send back from the robot and never encountered a problem with the

communication system. In the first tests we were driving behind the robot within a range of

200m to 300m to be sure no data is lost or the connection is interrupted. In the latest tests on a

fairly cloudy day the robot was doing a rectangle shaped route with round about 600m to each

side (see figureB.2) and the car with the receiving modem remained on the corner the robot

started instead of driving relatively near to the robot. Thus the maximum distance was around

850m between robot and car and absolutely no problems occurred. I was watching the radio

and modem all the time, but not even one packet was sent twice. So the software, as well as

the hardware are performing consistently.

For further use it might be good idea to supply the radio on the robot by +5V of the internal

housekeeping instead of batteries and maybe try to supply the radio modem and radio used

by 12VDC from the cars cigarette lighter, as far as a car is available, just to eliminate the bat-

tery power problem. Although it is still performing without any problems the wiring between

radios and modems should be rebuild at some point because the cable is still the one built for

test purposes in the very beginning and its simply not the nicest and most reliable design. I

think especially the capacitor-resistor circuitry for the push-to-talk (PTT) and transmit (TX)

8.4 Radio Interface and Communication 148

signal should be moved out of the housing of plug. Furthermore there are certainly modifica-

tion and changes possible for the software, especially in the case of a data and status request,

since both are just implemented as an example of what can be done, but there is no real use

for the control of the robot.

149

Appendix A

Functions and library overview

backwards_tilt drive.lib

clearStr radiocomm_e.lib

DispStr drive.lib

faster_forwards drive.lib

forward_full drive.lib

forward_partial drive.lib

getgps gps.lib

high_centered drive.lib

manual_drive drive.lib

navigate navigate.lib

processModemStr radiocomm_e.lib

ReadAD analogin.lib

read_sensors analogin.lib

SendToDAC drive.lib

sensor_high_centered analogin.lib

sensor_range analogin.lib

slower_forwards drive.lib

SPI_Binit SPI_B.lib

SPI_BRead SPI_B.lib

SPI_BWrite SPI_B.lib

150

SPI_BWrRd SPI_B.lib

stop drive.lib

str2wayp radiocomm_e.lib

SwapBytes drive.lib

termStr radiocomm_e.lib

turn_full navigate.lib

turn_left drive.lib

turn_partial navigate.lib

turn_right drive.lib

UpdateMotorOutput drive.lib

wp_follow_full drive.lib

wp_follow_partial drive.lib

A.1 Overview of parameters and variables 151

A.1 Overview of parameters and variables

angle(main_prog):

Constant integer to set the turning difference for manual drive mode in percent. The two

wheels on one side slows down forangle
2

and the other accelerates forangle
2

(default = 20).

bp_range(navigate.lib):

A float to set the radius for the circle around a basing point. Once within that range, the next

basing point will be generated and the robot will change its heading. The range is the value in

km (default = 0.045).

dis_bp(main_prog):

A float to roughly set the distance between two basing points. The distance between two

waypoints will be divided by that value. The return value is rounded off to an integer and is

the number of basing points on the track between the two waypoints. If the value is 0.5, the

distance between two basing points could be 468 m or 512 m for example. This calculation

makes sure the last basing point is the waypoint (default = 1.0).

drive_mode:

An integer that holds number of the actual drive mode and sets the drive mode entered when

CoolRobot is started. In "mainprogV0.34" it is set to 5 at startup which equals manual drive

mode. Accepted values are 1,2,3 and 5.

EINBUFSIZE :

Sets the size of serial port E’s input buffer. The value must be2n − 1 and is defaulted to

511bytes.

EOUTBUFSIZE :

Sets the size of serial port E’s output buffer. The value must be2n − 1 and is defaulted to

511bytes.

FS_USE_PROGRAM_FLASH:

Defined on beginning of the main program. This parameter for the file system determines how

A.1 Overview of parameters and variables 152

much kilobyte of program flash memory are set aside for the file system. It is set to 16 at the

moment but it is not essential if the second flash memory is used, because when using the

second flash for the file system no program flash is needed.

GPS_inv_limit(main_prog):

Integer that sets the number of cycles to retry for a valid GPS string before returning to manual

drive mode an stop. For the algorithm performing one GPS-data reading every second, it is

also the time in seconds to retry for a valid data input (default = 30).

LOG_FILE_NAME :

Sets the file name of the logfile. The value must be an unsigned integer 1 to 255. It is set to

1 + LX_2_USE which equal 2, since the logic extend (LX) we are using number 1 (second

flash) by default.

LX_2_USE:

Sets the logic extend (LX) to be used for the file system. It is set to 1 by the function

"get_flash_ls()".

max_output(drive.lib):

Constant integer to set the maximum output varriation (default = 1220). The top speed for the

Cool Robot is reached with an output voltage of 3 volts. The corresponding integer value to

be sent out on serial port D iszero_output + max_output = 2048 + 1220 = 3268 .

motor_speed_increment(main_prog):

Constant integer to set the difference in accelerating or slowing down for manual drive mode

in percent (default = 10).

MY_LS_SIZE :

Defined on beginning of the main program. This parameter set the logical sector size of the

file system aslog(base2) of the desired size. It affects the efficiency of the file system is set

to 9 which equals 1024byte, the value that achieves maximum efficiency.

scale_motor(analogin.lib):

A float to convert the 12 bit output value to motor current. Channel 0, 1, 2 and 3 are converted

A.1 Overview of parameters and variables 153

to motor current A, B, C and D. The input range is 5 volts and 1 V output voltage = 2A motor

current (default =5/4096.0 · 2).

scale_tilt(analogin.lib):

A float to convert the 12 bit output value to tilt roll and pitch. Channel 8 is roll and channel

9 is pitch. The input range is 5 volts and 1V = 1g. The tilt angle is the asin from the output

voltage (default =5/4096.0)

scale_velocity(analogin.lib):

A float to convert the 12 bit output value to motor velocity. Channel 4, 5, 6 and 7 are converted

to motor velocities A, B, C and D. The input range is 5 volts and 1V output voltge = 120Hz

Hall frequency (default =5·120·60
4096.0·2)

tilt_lim (analogin.lib):

An integer value for the maximum roll and pitch angle in degrees at which the robot should

be interrupted and stopped (default = 45◦).

tm_hc(main_prog):

An integer that defines the time the function "sensor_high_centered" waits until it switches

the drive mode to "high_centered". The value is the time in seconds (default = 10 sec).

tm_nav(main_prog):

An integer that defines the time between current point[2] and current point[1] for each naviga-

tion cycle in the drive mode "wp_follow_full" in seconds. The time for the course corrections

will be added! (default = 30).

tm_nav_low(main_prog):

An integer that defines the time between current point[2] and current point[1] for each naviga-

tion cycle in drive mode "wp_follow_partial" if the power does not allow waypoint following

at full speed in seconds. The time for course corrections will be added! (default = 50). The

time is automatically calculated with the value of "tm_nav".

tm_nav_wp(drive.lib):

An integer that defines the time between current point[2] and current point[1] for each navi-

A.1 Overview of parameters and variables 154

gation cycle once within a range of 100 m to the last active waypoint in seconds. Defined to

achieve a higher precision on reaching one exact point (default = 10)

turn_lim (navigate.lib):

An integer that limits the maximum turning angle for one navigation cycle in degrees. Makes

the open loop course correction possible and is used to adjust the shifts in heading caused by

sastrugi fields (default = 90).

wp_range(navigate.lib):

A float to set the radius for the circle around a waypoint. Once within that range the next

waypoint is activated and the Cool Robot will continue navigating. The range is the value in

km (default = 0.030).

zero_output(drive.lib):

Constant integer to set the zero output value of the DAC‘s. Zero volts output correspond with

no revolutions of the motors (default = 2048).

155

Appendix B

GPS position and waypoint following test

data

TableB.1 shows the data string sent back from the Cool Robot on march 24. For the abbrevi-
ations in the table see Table5.14.

aw 4337,8985 N -7209,3244 bp 4338,0999 N -7209,12186
aw 4338,1 N -7209,12

cp1 4337,9045 N -7209,3139 cp2 4337,8985 N -7209,3244 dw 0,444 bw 35,6 dbp 0,443 bbp 35,4 cd 0,017 cb 51,2
cp1 4337,9144 N -7209,3019 cp2 4337,9078 N -7209,3096 dw 0,421 bw 35,3 dbp 0,419 bbp 35,1 cd 0,016 cb 37,5
cp1 4337,9211 N -7209,2925 cp2 4337,9144 N -7209,3019 dw 0,403 bw 34,7 dbp 0,401 bbp 34,4 cd 0,019 cb 49,6
cp1 4337,9331 N -7209,2842 cp2 4337,9252 N -7209,2892 dw 0,378 bw 35,3 dbp 0,376 bbp 35,0 cd 0,018 cb 30,1
cp1 4337,9425 N -7209,2738 cp2 4337,9353 N -7209,2821 dw 0,356 bw 35,2 dbp 0,355 bbp 34,9 cd 0,018 cb 37,3
cp1 4337,9486 N -7209,2632 cp2 4337,9425 N -7209,2738 dw 0,339 bw 34,2 dbp 0,338 bbp 33,9 cd 0,018 cb 53,3
cp1 4337,9596 N -7209,2506 cp2 4337,9521 N -7209,2587 dw 0,313 bw 34,1 dbp 0,312 bbp 33,7 cd 0,017 cb 30,0
cp1 4337,9664 N -7209,2373 cp2 4337,9613 N -7209,248 dw 0,293 bw 32,4 dbp 0,291 bbp 32,0 cd 0,017 cb 55,4
cp1 4337,9762 N -7209,2239 cp2 4337,9695 N -7209,2327 dw 0,267 bw 31,1 dbp 0,266 bbp 30,7 cd 0,018 cb 43,1
cp1 4337,9888 N -7209,2123 cp2 4337,9801 N -7209,2204 dw 0,240 bw 31,0 dbp 0,239 bbp 30,5 cd 0,019 cb 34,6
cp1 4337,9965 N -7209,2033 cp2 4337,9888 N -7209,2123 dw 0,221 bw 30,1 dbp 0,220 bbp 29,6 cd 0,020 cb 41,0
cp1 4338,0112 N -7209,1921 cp2 4338,0002 N -7209,2001 dw 0,191 bw 30,4 dbp 0,189 bbp 29,8 cd 0,023 cb 25,8
cp1 4338,0198 N -7209,1811 cp2 4338,0133 N -7209,1899 dw 0,169 bw 28,7 dbp 0,167 bbp 28,1 cd 0,017 cb 44,9
cp1 4338,032 N -7209,1733 cp2 4338,0235 N -7209,1776 dw 0,143 bw 29,3 dbp 0,142 bbp 28,5 cd 0,018 cb 21,6
cp1 4338,0417 N -7209,1638 cp2 4338,0344 N -7209,1714 dw 0,123 bw 28,6 dbp 0,122 bbp 27,7 cd 0,016 cb 34,3
cp1 4338,0512 N -7209,1541 cp2 4338,0437 N -7209,1618 dw 0,100 bw 26,7 dbp 0,099 bbp 25,5 cd 0,018 cb 37,3
cp1 4338,0605 N -7209,1457 cp2 4338,0533 N -7209,1522 dw 0,080 bw 25,0 dbp 0,079 bbp 23,6 cd 0,016 cb 32,7
cp1 4338,0727 N -7209,1375 cp2 4338,0627 N -7209,144 dw 0,055 bw 24,7 dbp 0,054 bbp 22,6 cd 0,020 cb 25,8
cp1 4338,0814 N -7209,1302 cp2 4338,0727 N -7209,1375 dw 0,036 bw 21,5 dbp 0,035 bbp 18,2 cd 0,019 cb 30,7
cp1 4338,0928 N -7209,1208 cp2 4338,0838 N -7209,1283 dw 0,013 bw 0,0 dbp 0,576 bbp 37,4 cd 0,019 cb 30,6

aw 4337,92 N -7208,76 bp 4337,91267 N -7208,76205

cp1 4338,0913 N -7209,0889 cp2 4338,0957 N -7209,1012 dw 0,542 bw 125,8 dbp 0,548 bbp 127,0 cd 0,018 cb 120,6
cp1 4338,0835 N -7209,0736 cp2 4338,0899 N -7209,0858 dw 0,517 bw 125,9 dbp 0,523 bbp 127,2 cd 0,020 cb 124,6
cp1 4338,077 N -7209,0612 cp2 4338,0835 N -7209,0736 dw 0,497 bw 125,9 dbp 0,502 bbp 127,2 cd 0,020 cb 126,4
cp1 4338,0715 N -7209,0505 cp2 4338,077 N -7209,0612 dw 0,479 bw 125,8 dbp 0,485 bbp 127,2 cd 0,018 cb 126,7
cp1 4338,0659 N -7209,0401 cp2 4338,0715 N -7209,0505 dw 0,462 bw 125,8 dbp 0,468 bbp 127,2 cd 0,016 cb 126,8
cp1 4338,0605 N -7209,0296 cp2 4338,0659 N -7209,0401 dw 0,444 bw 125,9 dbp 0,450 bbp 127,4 cd 0,018 cb 122,7
cp1 4338,0554 N -7209,0199 cp2 4338,0605 N -7209,0296 dw 0,429 bw 125,9 dbp 0,435 bbp 127,4 cd 0,015 cb 127,0
cp1 4338,0498 N -7209,0099 cp2 4338,0554 N -7209,0199 dw 0,413 bw 125,9 dbp 0,419 bbp 127,5 cd 0,016 cb 126,8
cp1 4338,0443 N -7209,0011 cp2 4338,0498 N -7209,0099 dw 0,397 bw 125,6 dbp 0,402 bbp 127,3 cd 0,016 cb 131,3
cp1 4338,0374 N -7208,9875 cp2 4338,0428 N -7208,9984 dw 0,373 bw 125,7 dbp 0,379 bbp 127,5 cd 0,018 cb 122,7
cp1 4338,0323 N -7208,978 cp2 4338,0374 N -7208,9875 dw 0,358 bw 125,5 dbp 0,364 bbp 127,4 cd 0,014 cb 129,6
cp1 4338,0262 N -7208,9625 cp2 4338,0309 N -7208,9748 dw 0,335 bw 126,0 dbp 0,341 bbp 128,0 cd 0,018 cb 120,6
cp1 4338,019 N -7208,949 cp2 4338,0248 N -7208,9595 dw 0,312 bw 126,0 dbp 0,318 bbp 128,1 cd 0,018 cb 126,7
cp1 4338,0134 N -7208,939 cp2 4338,019 N -7208,949 dw 0,294 bw 126,1 dbp 0,300 bbp 128,3 cd 0,017 cb 124,6
cp1 4338,0077 N -7208,9282 cp2 4338,0134 N -7208,939 dw 0,277 bw 126,1 dbp 0,283 bbp 128,4 cd 0,018 cb 126,6
cp1 4338,0024 N -7208,9182 cp2 4338,0077 N -7208,9282 dw 0,261 bw 125,9 dbp 0,267 bbp 128,4 cd 0,016 cb 129,2
cp1 4337,9969 N -7208,9079 cp2 4338,0024 N -7208,9182 dw 0,243 bw 125,8 dbp 0,249 bbp 128,5 cd 0,018 cb 126,6
cp1 4337,9909 N -7208,8985 cp2 4337,9969 N -7208,9079 dw 0,227 bw 125,6 dbp 0,233 bbp 128,5 cd 0,017 cb 128,8
cp1 4337,984 N -7208,8908 cp2 4337,9909 N -7208,8985 dw 0,211 bw 124,3 dbp 0,217 bbp 127,5 cd 0,016 cb 142,6
cp1 4337,9762 N -7208,8743 cp2 4337,9811 N -7208,8855 dw 0,185 bw 124,5 dbp 0,191 bbp 128,0 cd 0,017 cb 118,5
cp1 4337,9691 N -7208,8615 cp2 4337,9747 N -7208,8713 dw 0,164 bw 124,0 dbp 0,170 bbp 128,0 cd 0,016 cb 129,2
cp1 4337,9631 N -7208,8471 cp2 4337,9677 N -7208,8585 dw 0,141 bw 124,4 dbp 0,147 bbp 129,0 cd 0,017 cb 122,5
cp1 4337,9584 N -7208,8368 cp2 4337,9631 N -7208,8471 dw 0,125 bw 124,6 dbp 0,131 bbp 129,8 cd 0,016 cb 122,3
cp1 4337,9529 N -7208,8258 cp2 4337,9584 N -7208,8368 dw 0,107 bw 125,0 dbp 0,113 bbp 131,0 cd 0,018 cb 122,7
cp1 4337,9474 N -7208,8139 cp2 4337,9529 N -7208,8258 dw 0,089 bw 125,5 dbp 0,095 bbp 132,6 cd 0,018 cb 122,7

156

cp1 4337,9421 N -7208,8035 cp2 4337,9474 N -7208,8139 dw 0,070 bw 125,7 dbp 0,077 bbp 134,5 cd 0,019 cb 124,7
cp1 4337,9367 N -7208,7935 cp2 4337,9421 N -7208,8035 dw 0,054 bw 125,3 dbp 0,061 bbp 136,5 cd 0,016 cb 126,8
cp1 4337,9308 N -7208,7832 cp2 4337,9367 N -7208,7935 dw 0,037 bw 123,7 dbp 0,044 bbp 139,5 cd 0,017 cb 128,9
cp1 4337,9244 N -7208,7695 cp2 4337,9291 N -7208,7801 dw 0,015 bw 127,0 dbp 0,604 bbp 125,9 cd 0,017 cb 120,3

aw 4337,62 N -7209 bp 4337,62474 N -7209,00925

cp1 4337,9021 N -7208,7605 cp2 4337,9119 N -7208,7605 dw 0,612 bw 211,5 dbp 0,610 bbp 213,0 cd 0,017 cb 180,0
cp1 4337,884 N -7208,7673 cp2 4337,895 N -7208,7619 dw 0,578 bw 212,6 dbp 0,577 bbp 214,1 cd 0,021 cb 197,8
cp1 4337,8718 N -7208,7773 cp2 4337,8799 N -7208,77 dw 0,553 bw 212,5 dbp 0,552 bbp 214,1 cd 0,017 cb 215,9
cp1 4337,8637 N -7208,7843 cp2 4337,8718 N -7208,7773 dw 0,535 bw 212,6 dbp 0,534 bbp 214,2 cd 0,018 cb 210,1
cp1 4337,8558 N -7208,7912 cp2 4337,8637 N -7208,7843 dw 0,518 bw 212,5 dbp 0,517 bbp 214,2 cd 0,017 cb 214,4
cp1 4337,8484 N -7208,798 cp2 4337,8558 N -7208,7912 dw 0,502 bw 212,6 dbp 0,501 bbp 214,3 cd 0,016 cb 209,3
cp1 4337,8407 N -7208,8042 cp2 4337,8484 N -7208,798 dw 0,485 bw 212,7 dbp 0,484 bbp 214,5 cd 0,017 cb 211,4
cp1 4337,8324 N -7208,8108 cp2 4337,8407 N -7208,8042 dw 0,467 bw 212,8 dbp 0,466 bbp 214,7 cd 0,018 cb 208,9
cp1 4337,8243 N -7208,8173 cp2 4337,8324 N -7208,8108 dw 0,450 bw 212,9 dbp 0,449 bbp 214,9 cd 0,018 cb 210,1
cp1 4337,815 N -7208,825 cp2 4337,8243 N -7208,8173 dw 0,430 bw 212,9 dbp 0,429 bbp 214,9 cd 0,019 cb 214,6
cp1 4337,8072 N -7208,8317 cp2 4337,815 N -7208,825 dw 0,413 bw 213,0 dbp 0,412 bbp 215,1 cd 0,018 cb 210,1
cp1 4337,7998 N -7208,8379 cp2 4337,8072 N -7208,8317 dw 0,396 bw 213,2 dbp 0,396 bbp 215,4 cd 0,016 cb 208,0
cp1 4337,7915 N -7208,8488 cp2 4337,7978 N -7208,8402 dw 0,375 bw 212,5 dbp 0,375 bbp 214,8 cd 0,017 cb 224,9
cp1 4337,7826 N -7208,86 cp2 4337,7894 N -7208,8514 dw 0,354 bw 211,9 dbp 0,353 bbp 214,4 cd 0,017 cb 220,5
cp1 4337,7717 N -7208,8679 cp2 4337,7795 N -7208,8632 dw 0,331 bw 212,2 dbp 0,330 bbp 214,8 cd 0,015 cb 205,8
cp1 4337,7619 N -7208,8766 cp2 4337,7695 N -7208,8697 dw 0,311 bw 212,2 dbp 0,310 bbp 215,0 cd 0,015 cb 210,8
cp1 4337,7531 N -7208,8849 cp2 4337,7619 N -7208,8766 dw 0,290 bw 212,2 dbp 0,289 bbp 215,2 cd 0,021 cb 212,2
cp1 4337,7458 N -7208,8929 cp2 4337,7531 N -7208,8849 dw 0,272 bw 211,6 dbp 0,271 bbp 214,7 cd 0,018 cb 221,5
cp1 4337,7355 N -7208,9012 cp2 4337,7437 N -7208,8947 dw 0,251 bw 211,6 dbp 0,250 bbp 215,1 cd 0,018 cb 210,1
cp1 4337,7277 N -7208,9075 cp2 4337,7355 N -7208,9012 dw 0,234 bw 211,6 dbp 0,233 bbp 215,3 cd 0,017 cb 211,4
cp1 4337,7189 N -7208,9149 cp2 4337,7277 N -7208,9075 dw 0,216 bw 211,9 dbp 0,215 bbp 215,9 cd 0,018 cb 208,9
cp1 4337,7109 N -7208,922 cp2 4337,7189 N -7208,9149 dw 0,197 bw 211,5 dbp 0,196 bbp 215,9 cd 0,019 cb 215,9
cp1 4337,6999 N -7208,928 cp2 4337,7086 N -7208,9235 dw 0,176 bw 213,1 dbp 0,176 bbp 218,0 cd 0,017 cb 202,5
cp1 4337,6893 N -7208,9355 cp2 4337,6974 N -7208,9295 dw 0,155 bw 214,1 dbp 0,155 bbp 219,7 cd 0,017 cb 206,9
cp1 4337,6789 N -7208,9447 cp2 4337,6871 N -7208,9374 dw 0,132 bw 213,9 dbp 0,132 bbp 220,5 cd 0,018 cb 210,0
cp1 4337,671 N -7208,9509 cp2 4337,6789 N -7208,9447 dw 0,115 bw 215,0 dbp 0,115 bbp 222,5 cd 0,017 cb 206,8
cp1 4337,6611 N -7208,9609 cp2 4337,6689 N -7208,9526 dw 0,092 bw 214,8 dbp 0,093 bbp 224,1 cd 0,017 cb 215,9
cp1 4337,6534 N -7208,9678 cp2 4337,6611 N -7208,9609 dw 0,075 bw 214,9 dbp 0,076 bbp 226,4 cd 0,017 cb 214,4
cp1 4337,6461 N -7208,9742 cp2 4337,6534 N -7208,9678 dw 0,059 bw 215,0 dbp 0,061 bbp 229,4 cd 0,016 cb 214,3
cp1 4337,6387 N -7208,9803 cp2 4337,6461 N -7208,9742 dw 0,042 bw 218,3 dbp 0,045 bbp 237,7 cd 0,017 cb 206,9
cp1 4337,6301 N -7208,9907 cp2 4337,6368 N -7208,9824 dw 0,022 bw 213,6 dbp 0,026 bbp 249,4 cd 0,016 cb 222,1

aw 4337,8002 N -7209,3001 bp 4337,81013 N -7209,29306

cp1 4337,6291 N -7209,0215 cp2 4337,6264 N -7209,0102 dw 0,489 bw 310,2 dbp 0,494 bbp 312,6 cd 0,015 cb 290,4
cp1 4337,6353 N -7209,0396 cp2 4337,6305 N -7209,0277 dw 0,464 bw 311,1 dbp 0,469 bbp 313,6 cd 0,017 cb 298,5
cp1 4337,641 N -7209,0548 cp2 4337,6367 N -7209,0435 dw 0,441 bw 312,0 dbp 0,446 bbp 314,5 cd 0,018 cb 296,9
cp1 4337,6515 N -7209,0699 cp2 4337,6449 N -7209,0607 dw 0,414 bw 311,7 dbp 0,420 bbp 314,5 cd 0,017 cb 315,2
cp1 4337,6574 N -7209,0791 cp2 4337,6515 N -7209,0699 dw 0,398 bw 311,7 dbp 0,403 bbp 314,5 cd 0,017 cb 313,3
cp1 4337,6632 N -7209,0891 cp2 4337,6574 N -7209,0791 dw 0,380 bw 311,9 dbp 0,385 bbp 314,9 cd 0,018 cb 306,7
cp1 4337,671 N -7209,1005 cp2 4337,6649 N -7209,0918 dw 0,359 bw 311,8 dbp 0,364 bbp 315,0 cd 0,016 cb 311,3
cp1 4337,6766 N -7209,1098 cp2 4337,671 N -7209,1005 dw 0,342 bw 312,0 dbp 0,348 bbp 315,3 cd 0,017 cb 308,8
cp1 4337,6825 N -7209,12 cp2 4337,6766 N -7209,1098 dw 0,325 bw 312,1 dbp 0,331 bbp 315,6 cd 0,017 cb 308,8
cp1 4337,6878 N -7209,1297 cp2 4337,6825 N -7209,12 dw 0,309 bw 312,4 dbp 0,314 bbp 316,1 cd 0,016 cb 306,8
cp1 4337,6953 N -7209,1424 cp2 4337,6895 N -7209,1323 dw 0,287 bw 312,5 dbp 0,293 bbp 316,4 cd 0,017 cb 310,8
cp1 4337,7009 N -7209,1518 cp2 4337,6953 N -7209,1424 dw 0,271 bw 313,0 dbp 0,277 bbp 317,1 cd 0,016 cb 304,6
cp1 4337,7084 N -7209,1646 cp2 4337,7025 N -7209,1544 dw 0,249 bw 313,0 dbp 0,255 bbp 317,5 cd 0,017 cb 310,8
cp1 4337,7141 N -7209,1743 cp2 4337,7084 N -7209,1646 dw 0,233 bw 313,4 dbp 0,239 bbp 318,2 cd 0,016 cb 306,8
cp1 4337,7222 N -7209,1859 cp2 4337,716 N -7209,1767 dw 0,211 bw 313,3 dbp 0,217 bbp 318,6 cd 0,017 cb 315,1
cp1 4337,7277 N -7209,1948 cp2 4337,7222 N -7209,1859 dw 0,195 bw 313,5 dbp 0,201 bbp 319,2 cd 0,016 cb 311,3
cp1 4337,7338 N -7209,2049 cp2 4337,7277 N -7209,1948 dw 0,178 bw 313,9 dbp 0,185 bbp 320,1 cd 0,017 cb 308,9
cp1 4337,7408 N -7209,2165 cp2 4337,7354 N -7209,2073 dw 0,158 bw 314,2 dbp 0,164 bbp 321,2 cd 0,016 cb 309,2
cp1 4337,7486 N -7209,2293 cp2 4337,7423 N -7209,2192 dw 0,135 bw 315,0 dbp 0,142 bbp 323,1 cd 0,018 cb 308,6
cp1 4337,7562 N -7209,2413 cp2 4337,7502 N -7209,2317 dw 0,114 bw 316,0 dbp 0,122 bbp 325,4 cd 0,017 cb 310,8
cp1 4337,7639 N -7209,2537 cp2 4337,7579 N -7209,244 dw 0,092 bw 317,2 dbp 0,100 bbp 328,4 cd 0,018 cb 308,6
cp1 4337,7732 N -7209,2688 cp2 4337,7657 N -7209,2561 dw 0,066 bw 319,9 dbp 0,076 bbp 334,5 cd 0,021 cb 308,0
cp1 4337,781 N -7209,2805 cp2 4337,7748 N -7209,2711 dw 0,045 bw 322,4 dbp 0,057 bbp 342,0 cd 0,017 cb 313,3

157

TableB.2 shows the test data from the waypoint following test on march 22nd.

4337,9849 N -7209,261
aw 4338,1 N -7209,12 bp 4338,0235 N -7209,217

cp1 4337,9849 N -7209,261 cp2 4337,9779 N -7209,268 dw 0,284 bw 41,5 dbp 0,093 bbp 39,7 cd 0,017 cb 35,9
cp1 4337,9922 N -7209,255 cp2 4337,9849 N -7209,261 dw 0,269 bw 42,3 dbp 0,077 bbp 42,2 cd 0,016 cb 28,0
cp1 4338,0011 N -7209,241 cp2 4337,9952 N -7209,251 dw 0,244 bw 41,6 dbp 0,052 bbp 38,8 cd 0,017 cb 49,2
cp1 4338,0085 N -7209,229 cp2 4338,0028 N -7209,239 dw 0,224 bw 40,7 dbp 0,033 bbp 30,4 cd 0,016 cb 55,4
cp1 4338,0182 N -7209,218 cp2 4338,0118 N -7209,225 dw 0,199 bw 40,9 dbp 0,088 bbp 38,5 cd 0,016 cb 39,1
cp1 4338,0239 N -7209,209 cp2 4338,0182 N -7209,218 dw 0,183 bw 40,2 dbp 0,072 bbp 36,2 cd 0,016 cb 48,7
cp1 4338,0321 N -7209,197 cp2 4338,026 N -7209,206 dw 0,161 bw 39,2 dbp 0,051 bbp 31,3 cd 0,017 cb 49,2
cp1 4338,0447 N -7209,191 cp2 4338,0367 N -7209,194 dw 0,140 bw 43,0 dbp 0,028 bbp 44,0 cd 0,015 cb 12,8
cp1 4338,0574 N -7209,181 cp2 4338,05 N -7209,188 dw 0,113 bw 45,8 dbp 0,086 bbp 41,5 cd 0,016 cb 34,3
cp1 4338,0652 N -7209,17 cp2 4338,0592 N -7209,179 dw 0,093 bw 45,7 dbp 0,066 bbp 40,1 cd 0,015 cb 46,0
cp1 4338,0748 N -7209,162 cp2 4338,0672 N -7209,168 dw 0,073 bw 50,0 dbp 0,046 bbp 44,3 cd 0,016 cb 32,8
cp1 4338,0827 N -7209,152 cp2 4338,0769 N -7209,16 dw 0,054 bw 52,7 dbp 0,026 bbp 45,7 cd 0,015 cb 48,1
cp1 4338,0882 N -7209,136 cp2 4338,0845 N -7209,147 dw 0,030 bw 43,5 dbp 0,090 bbp 32,2 cd 0,016 cb 62,0
cp1 4338,097 N -7209,123 cp2 4338,0912 N -7209,131 dw 0,006 bw 32,3 dbp 0,067 bbp 27,1 cd 0,016 cb 44,0

aw 4337,92 N -7208,76 bp 4338,0614 N -7209,051

cp1 4338,0959 N -7209,094 cp2 4338,0992 N -7209,105 dw 0,552 bw 126,1 dbp 0,085 bbp 138,2 cd 0,016 cb 111,6
cp1 4338,0862 N -7209,079 cp2 4338,0925 N -7209,088 dw 0,525 bw 125,9 dbp 0,059 bbp 142,0 cd 0,017 cb 135,1
cp1 4338,0779 N -7209,068 cp2 4338,0844 N -7209,076 dw 0,505 bw 125,4 dbp 0,037 bbp 144,1 cd 0,016 cb 136,0
cp1 4338,0703 N -7209,058 cp2 4338,0762 N -7209,066 dw 0,485 bw 124,9 dbp 0,018 bbp 151,1 cd 0,014 cb 137,1
cp1 4338,0636 N -7209,044 cp2 4338,0684 N -7209,054 dw 0,463 bw 125,0 dbp 0,092 bbp 126,2 cd 0,016 cb 124,6
cp1 4338,0599 N -7209,034 cp2 4338,0636 N -7209,044 dw 0,449 bw 125,4 dbp 0,078 bbp 128,3 cd 0,014 cb 114,7
cp1 4338,0537 N -7209,019 cp2 4338,0584 N -7209,03 dw 0,426 bw 125,6 dbp 0,055 bbp 131,1 cd 0,017 cb 122,5
cp1 4338,0453 N -7209,005 cp2 4338,0511 N -7209,015 dw 0,402 bw 125,4 dbp 0,031 bbp 132,7 cd 0,016 cb 126,8
cp1 4338,04 N -7208,996 cp2 4338,0453 N -7209,005 dw 0,385 bw 125,2 dbp 0,098 bbp 125,0 cd 0,017 cb 128,9
cp1 4338,0356 N -7208,985 cp2 4338,04 N -7208,996 dw 0,369 bw 125,5 dbp 0,082 bbp 126,4 cd 0,016 cb 118,0
cp1 4338,029 N -7208,973 cp2 4338,0341 N -7208,982 dw 0,348 bw 125,4 dbp 0,061 bbp 125,8 cd 0,016 cb 126,8
cp1 4338,0249 N -7208,962 cp2 4338,029 N -7208,973 dw 0,333 bw 125,6 dbp 0,046 bbp 127,8 cd 0,015 cb 119,9
cp1 4338,0177 N -7208,949 cp2 4338,0235 N -7208,959 dw 0,310 bw 125,7 dbp 0,023 bbp 130,8 cd 0,018 cb 126,6
cp1 4338,0125 N -7208,938 cp2 4338,0177 N -7208,949 dw 0,293 bw 125,7 dbp 0,099 bbp 125,0 cd 0,017 cb 124,6
cp1 4338,0079 N -7208,927 cp2 4338,0125 N -7208,938 dw 0,276 bw 126,2 dbp 0,082 bbp 126,4 cd 0,017 cb 118,5
cp1 4338,0008 N -7208,916 cp2 4338,0066 N -7208,924 dw 0,257 bw 125,9 dbp 0,063 bbp 125,2 cd 0,015 cb 131,9
cp1 4337,9937 N -7208,902 cp2 4337,9984 N -7208,912 dw 0,234 bw 125,9 dbp 0,040 bbp 124,6 cd 0,016 cb 122,4
cp1 4337,9892 N -7208,891 cp2 4337,9937 N -7208,902 dw 0,216 bw 126,3 dbp 0,022 bbp 127,9 cd 0,018 cb 120,6
cp1 4337,9825 N -7208,877 cp2 4337,9875 N -7208,887 dw 0,194 bw 127,0 dbp 0,092 bbp 127,0 cd 0,017 cb 118,5
cp1 4337,9755 N -7208,864 cp2 4337,981 N -7208,874 dw 0,173 bw 126,9 dbp 0,071 bbp 126,7 cd 0,017 cb 122,5
cp1 4337,9687 N -7208,852 cp2 4337,9739 N -7208,861 dw 0,152 bw 126,8 dbp 0,050 bbp 126,1 cd 0,016 cb 124,6
cp1 4337,964 N -7208,842 cp2 4337,9687 N -7208,852 dw 0,137 bw 126,7 dbp 0,035 bbp 125,7 cd 0,015 cb 127,0
cp1 4337,9591 N -7208,832 cp2 4337,964 N -7208,842 dw 0,119 bw 127,0 dbp 0,018 bbp 126,6 cd 0,017 cb 124,6
cp1 4337,9549 N -7208,822 cp2 4337,9591 N -7208,832 dw 0,104 bw 128,1 dbp 0,099 bbp 126,4 cd 0,015 cb 119,9
cp1 4337,9482 N -7208,809 cp2 4337,9535 N -7208,819 dw 0,084 bw 129,4 dbp 0,079 bbp 127,4 cd 0,016 cb 126,8
cp1 4337,9437 N -7208,8 cp2 4337,9482 N -7208,809 dw 0,068 bw 130,5 dbp 0,063 bbp 128,1 cd 0,016 cb 124,6
cp1 4337,9395 N -7208,789 cp2 4337,9437 N -7208,8 dw 0,053 bw 134,1 dbp 0,048 bbp 131,3 cd 0,015 cb 117,4
cp1 4337,9326 N -7208,775 cp2 4337,9379 N -7208,785 dw 0,031 bw 138,4 dbp 0,026 bbp 134,3 cd 0,016 cb 129,2
cp1 4337,9238 N -7208,763 cp2 4337,9299 N -7208,771 dw 0,008 bw 156,3 dbp 0,091 bbp 123,9 cd 0,016 cb 137,9

aw 4337,62 N -7209 bp 4337,8738 N -7208,804

cp1 4337,9033 N -7208,759 cp2 4337,9124 N -7208,758 dw 0,615 bw 211,6 dbp 0,081 bbp 227,9 cd 0,017 cb 270,0
cp1 4337,8905 N -7208,748 cp2 4337,8969 N -7208,755 dw 0,603 bw 214,0 dbp 0,082 bbp 247,7 cd 0,016 cb 140,8
cp1 4337,8678 N -7208,748 cp2 4337,8763 N -7208,745 dw 0,569 bw 216,3 dbp 0,075 bbp 278,1 cd 0,017 cb 195,4
cp1 4337,8539 N -7208,77 cp2 4337,8576 N -7208,76 dw 0,530 bw 215,4 dbp 0,058 bbp 309,6 cd 0,017 cb 243,7
cp1 4337,8541 N -7208,796 cp2 4337,8527 N -7208,784 dw 0,511 bw 212,3 dbp 0,039 bbp 343,6 cd 0,015 cb 275,6
cp1 4337,8671 N -7208,815 cp2 4337,8599 N -7208,809 dw 0,518 bw 208,4 dbp 0,020 bbp 50,0 cd 0,015 cb 324,1
cp1 4337,8603 N -7208,839 cp2 4337,8681 N -7208,832 dw 0,493 bw 205,8 dbp 0,083 bbp 196,8 cd 0,018 cb 210,1
cp1 4337,8492 N -7208,843 cp2 4337,8576 N -7208,841 dw 0,473 bw 206,4 dbp 0,062 bbp 198,4 cd 0,016 cb 188,1
cp1 4337,8372 N -7208,848 cp2 4337,8456 N -7208,844 dw 0,449 bw 206,8 dbp 0,038 bbp 198,3 cd 0,016 cb 199,9
cp1 4337,8285 N -7208,85 cp2 4337,8372 N -7208,848 dw 0,434 bw 207,5 dbp 0,023 bbp 205,8 cd 0,016 cb 188,1
cp1 4337,8164 N -7208,853 cp2 4337,8247 N -7208,851 dw 0,413 bw 208,4 dbp 0,085 bbp 214,7 cd 0,016 cb 192,6
cp1 4337,804 N -7208,86 cp2 4337,8126 N -7208,855 dw 0,389 bw 208,8 dbp 0,062 bbp 219,6 cd 0,015 cb 200,9
cp1 4337,7941 N -7208,873 cp2 4337,7998 N -7208,865 dw 0,364 bw 207,8 dbp 0,036 bbp 217,3 cd 0,015 cb 228,1
cp1 4337,7828 N -7208,878 cp2 4337,7909 N -7208,875 dw 0,342 bw 208,5 dbp 0,017 bbp 243,7 cd 0,015 cb 188,5
cp1 4337,771 N -7208,883 cp2 4337,7785 N -7208,88 dw 0,320 bw 209,3 dbp 0,086 bbp 215,0 cd 0,015 cb 197,1
cp1 4337,7596 N -7208,895 cp2 4337,7663 N -7208,887 dw 0,294 bw 208,5 dbp 0,060 bbp 213,3 cd 0,016 cb 222,2
cp1 4337,7505 N -7208,9 cp2 4337,7578 N -7208,896 dw 0,276 bw 208,7 dbp 0,042 bbp 217,1 cd 0,014 cb 207,1
cp1 4337,74 N -7208,905 cp2 4337,7484 N -7208,902 dw 0,256 bw 209,8 dbp 0,024 bbp 235,4 cd 0,016 cb 196,2
cp1 4337,7301 N -7208,909 cp2 4337,7373 N -7208,907 dw 0,238 bw 211,1 dbp 0,089 bbp 213,6 cd 0,013 cb 189,8
cp1 4337,7175 N -7208,916 cp2 4337,7253 N -7208,911 dw 0,212 bw 211,8 dbp 0,064 bbp 217,1 cd 0,017 cb 206,8
cp1 4337,7065 N -7208,924 cp2 4337,7141 N -7208,918 dw 0,189 bw 212,2 dbp 0,041 bbp 222,1 cd 0,016 cb 209,4
cp1 4337,6979 N -7208,935 cp2 4337,7041 N -7208,927 dw 0,169 bw 210,9 dbp 0,020 bbp 221,0 cd 0,015 cb 225,9
cp1 4337,6856 N -7208,94 cp2 4337,694 N -7208,938 dw 0,145 bw 213,6 dbp 0,083 bbp 213,7 cd 0,017 cb 187,5
cp1 4337,6717 N -7208,95 cp2 4337,6793 N -7208,944 dw 0,117 bw 214,3 dbp 0,055 bbp 215,4 cd 0,015 cb 210,8
cp1 4337,6619 N -7208,959 cp2 4337,6696 N -7208,952 dw 0,095 bw 215,1 dbp 0,034 bbp 218,1 cd 0,016 cb 209,4
cp1 4337,652 N -7208,967 cp2 4337,6594 N -7208,961 dw 0,074 bw 216,6 dbp 0,086 bbp 209,9 cd 0,017 cb 211,4
cp1 4337,643 N -7208,976 cp2 4337,6499 N -7208,969 dw 0,052 bw 215,9 dbp 0,065 bbp 207,2 cd 0,017 cb 220,4
cp1 4337,6329 N -7208,981 cp2 4337,6411 N -7208,977 dw 0,034 bw 227,0 dbp 0,046 bbp 212,0 cd 0,016 cb 200,0
cp1 4337,622 N -7208,992 cp2 4337,6281 N -7208,985 dw 0,011 bw 254,6 dbp 0,021 bbp 208,5 cd 0,014 cb 217,6

aw 4337,8 N -7209,3 bp 4337,6572 N -7209,053

cp1 4337,6195 N -7209,022 cp2 4337,6179 N -7209,01 dw 0,501 bw 311,8 dbp 0,082 bbp 328,5 cd 0,015 cb 284,9
cp1 4337,6277 N -7209,04 cp2 4337,6228 N -7209,031 dw 0,472 bw 312,6 dbp 0,057 bbp 343,3 cd 0,015 cb 307,0
cp1 4337,642 N -7209,051 cp2 4337,634 N -7209,046 dw 0,444 bw 311,2 dbp 0,028 bbp 353,5 cd 0,016 cb 343,9
cp1 4337,6513 N -7209,065 cp2 4337,6462 N -7209,056 dw 0,418 bw 311,2 dbp 0,080 bbp 307,8 cd 0,016 cb 304,6
cp1 4337,6567 N -7209,073 cp2 4337,6513 N -7209,065 dw 0,405 bw 310,9 dbp 0,067 bbp 305,2 cd 0,014 cb 320,4
cp1 4337,6619 N -7209,091 cp2 4337,6594 N -7209,079 dw 0,379 bw 312,3 dbp 0,041 bbp 314,2 cd 0,017 cb 285,4
cp1 4337,6682 N -7209,108 cp2 4337,6643 N -7209,098 dw 0,355 bw 313,4 dbp 0,019 bbp 339,3 cd 0,016 cb 302,3
cp1 4337,6733 N -7209,123 cp2 4337,6696 N -7209,112 dw 0,334 bw 314,6 dbp 0,084 bbp 312,8 cd 0,016 cb 295,5
cp1 4337,6797 N -7209,139 cp2 4337,6756 N -7209,128 dw 0,312 bw 315,8 dbp 0,061 bbp 318,3 cd 0,015 cb 299,9
cp1 4337,6863 N -7209,153 cp2 4337,682 N -7209,144 dw 0,289 bw 317,0 dbp 0,039 bbp 328,0 cd 0,014 cb 302,1
cp1 4337,6966 N -7209,167 cp2 4337,6901 N -7209,159 dw 0,262 bw 317,3 dbp 0,014 bbp 356,0 cd 0,016 cb 316,0

158

cp1 4337,702 N -7209,181 cp2 4337,6984 N -7209,171 dw 0,242 bw 318,5 dbp 0,085 bbp 310,1 cd 0,016 cb 298,0
cp1 4337,7072 N -7209,195 cp2 4337,7033 N -7209,184 dw 0,223 bw 320,7 dbp 0,065 bbp 315,1 cd 0,016 cb 293,0
cp1 4337,7158 N -7209,209 cp2 4337,7101 N -7209,201 dw 0,198 bw 322,2 dbp 0,040 bbp 319,0 cd 0,015 cb 314,0
cp1 4337,7247 N -7209,221 cp2 4337,7186 N -7209,213 dw 0,175 bw 323,1 dbp 0,017 bbp 324,1 cd 0,017 cb 313,2
cp1 4337,7299 N -7209,235 cp2 4337,7264 N -7209,225 dw 0,156 bw 325,9 dbp 0,085 bbp 310,1 cd 0,016 cb 298,0
cp1 4337,7342 N -7209,25 cp2 4337,7311 N -7209,239 dw 0,140 bw 330,9 dbp 0,065 bbp 316,3 cd 0,016 cb 295,6
cp1 4337,7418 N -7209,266 cp2 4337,7367 N -7209,256 dw 0,118 bw 336,5 dbp 0,041 bbp 324,1 cd 0,015 cb 307,0
cp1 4337,7506 N -7209,277 cp2 4337,7449 N -7209,269 dw 0,097 bw 340,9 dbp 0,019 bbp 332,2 cd 0,015 cb 319,0
cp1 4337,7608 N -7209,289 cp2 4337,7539 N -7209,281 dw 0,075 bw 347,5 dbp 0,083 bbp 305,5 cd 0,017 cb 319,6
cp1 4337,7726 N -7209,299 cp2 4337,7655 N -7209,293 dw 0,051 bw 270,0 dbp 0,059 bbp 296,1 cd 0,017 cb 328,6
cp1 4337,7713 N -7209,321 cp2 4337,7753 N -7209,311 dw 0,062 bw 27,6 dbp 0,037 bbp 322,1 cd 0,017 cb 243,8
cp1 4337,7735 N -7209,347 cp2 4337,7701 N -7209,337 dw 0,080 bw 51,3 dbp 0,027 bbp 23,7 cd 0,015 cb 290,4
cp1 4337,7906 N -7209,335 cp2 4337,7852 N -7209,344 dw 0,049 bw 67,1 dbp 0,104 bbp 290,0 cd 0,015 cb 55,3
cp1 4337,7969 N -7209,323 cp2 4337,792 N -7209,332 dw 0,031 bw 77,5 dbp 0,114 bbp 281,9 cd 0,015 cb 55,4

aw 4337,8301 N -7209,352 bp 4337,8761 N -7209,283
aw 4338,1 N -7209,12 bp 4337,8761 N -7209,283

cp1 4337,8301 N -7209,352 cp2 4337,8246 N -7209,343 dw 0,586 bw 31,9 dbp 0,124 bbp 47,9 cd 0,017 cb 313,3
cp1 4337,8498 N -7209,36 cp2 4337,8421 N -7209,36 dw 0,563 bw 34,7 dbp 0,114 bbp 64,8 cd 0,014 cb 270,0
cp1 4337,8579 N -7209,337 cp2 4337,8577 N -7209,348 dw 0,533 bw 32,9 dbp 0,079 bbp 64,9 cd 0,015 cb 90,0
cp1 4337,866 N -7209,32 cp2 4337,8603 N -7209,329 dw 0,509 bw 31,7 dbp 0,053 bbp 69,8 cd 0,015 cb 46,0
cp1 4337,8719 N -7209,302 cp2 4337,8678 N -7209,315 dw 0,486 bw 30,0 dbp 0,026 bbp 74,9 cd 0,019 cb 66,6
cp1 4337,8853 N -7209,29 cp2 4337,8774 N -7209,295 dw 0,457 bw 29,7 dbp 0,087 bbp 24,4 cd 0,017 cb 26,8
cp1 4337,8923 N -7209,282 cp2 4337,8853 N -7209,29 dw 0,441 bw 29,3 dbp 0,071 bbp 20,7 cd 0,017 cb 40,4
cp1 4337,9044 N -7209,276 cp2 4337,8964 N -7209,28 dw 0,418 bw 30,1 dbp 0,048 bbp 23,0 cd 0,016 cb 12,3
cp1 4337,915 N -7209,269 cp2 4337,9078 N -7209,274 dw 0,396 bw 30,3 dbp 0,026 bbp 19,9 cd 0,016 cb 28,1
cp1 4337,9227 N -7209,263 cp2 4337,915 N -7209,269 dw 0,379 bw 30,2 dbp 0,099 bbp 25,5 cd 0,016 cb 32,8
cp1 4337,9333 N -7209,26 cp2 4337,9249 N -7209,262 dw 0,360 bw 31,1 dbp 0,080 bbp 28,8 cd 0,016 cb 12,2
cp1 4337,9444 N -7209,253 cp2 4337,9369 N -7209,258 dw 0,338 bw 31,6 dbp 0,057 bbp 31,0 cd 0,014 cb 23,1
cp1 4337,9546 N -7209,245 cp2 4337,9464 N -7209,252 dw 0,316 bw 31,8 dbp 0,036 bbp 31,6 cd 0,017 cb 31,4
cp1 4337,962 N -7209,239 cp2 4337,9546 N -7209,245 dw 0,300 bw 32,0 dbp 0,019 bbp 34,5 cd 0,016 cb 28,0
cp1 4337,9706 N -7209,234 cp2 4337,962 N -7209,239 dw 0,284 bw 32,7 dbp 0,099 bbp 29,2 cd 0,017 cb 18,9
cp1 4337,9801 N -7209,228 cp2 4337,9727 N -7209,233 dw 0,265 bw 33,1 dbp 0,080 bbp 29,5 cd 0,014 cb 23,0
cp1 4337,9881 N -7209,218 cp2 4337,9819 N -7209,226 dw 0,244 bw 32,3 dbp 0,059 bbp 25,1 cd 0,016 cb 42,1
cp1 4338,0006 N -7209,212 cp2 4337,9917 N -7209,216 dw 0,220 bw 33,6 dbp 0,035 bbp 27,9 cd 0,017 cb 19,0
cp1 4338,011 N -7209,207 cp2 4338,003 N -7209,211 dw 0,201 bw 35,0 dbp 0,016 bbp 39,2 cd 0,016 cb 24,7
cp1 4338,0221 N -7209,207 cp2 4338,011 N -7209,207 dw 0,185 bw 38,9 dbp 0,099 bbp 33,6 cd 0,020 cb 356,9
cp1 4338,0338 N -7209,196 cp2 4338,029 N -7209,205 dw 0,159 bw 39,9 dbp 0,073 bbp 33,8 cd 0,015 cb 48,0
cp1 4338,045 N -7209,186 cp2 4338,0369 N -7209,192 dw 0,134 bw 40,8 dbp 0,048 bbp 33,2 cd 0,017 cb 30,0
cp1 4338,053 N -7209,181 cp2 4338,045 N -7209,186 dw 0,118 bw 43,2 dbp 0,032 bbp 38,3 cd 0,017 cb 23,4
cp1 4338,0622 N -7209,177 cp2 4338,053 N -7209,181 dw 0,102 bw 47,6 dbp 0,097 bbp 28,2 cd 0,018 cb 17,4
cp1 4338,0724 N -7209,172 cp2 4338,0644 N -7209,176 dw 0,085 bw 53,2 dbp 0,078 bbp 29,6 cd 0,017 cb 23,4
cp1 4338,0817 N -7209,167 cp2 4338,0746 N -7209,171 dw 0,070 bw 61,5 dbp 0,059 bbp 32,4 cd 0,015 cb 22,1
cp1 4338,0917 N -7209,161 cp2 4338,0837 N -7209,166 dw 0,057 bw 74,5 dbp 0,041 bbp 38,4 cd 0,016 cb 24,6
cp1 4338,1007 N -7209,155 cp2 4338,0944 N -7209,159 dw 0,046 bw 91,9 dbp 0,022 bbp 47,4 cd 0,013 cb 30,1
cp1 4338,1056 N -7209,131 cp2 4338,1062 N -7209,142 dw 0,018 bw 126,6 dbp 0,096 bbp 12,4 cd 0,015 cb 92,8

aw 4337,92 N -7208,76 bp 4338,0701 N -7209,06

cp1 4338,099 N -7209,113 cp2 4338,1041 N -7209,124 dw 0,577 bw 125,1 dbp 0,090 bbp 126,6 cd 0,016 cb 124,6
cp1 4338,0934 N -7209,105 cp2 4338,099 N -7209,113 dw 0,561 bw 125,0 dbp 0,073 bbp 126,1 cd 0,017 cb 128,9
cp1 4338,0878 N -7209,095 cp2 4338,0934 N -7209,105 dw 0,546 bw 124,8 dbp 0,059 bbp 124,7 cd 0,015 cb 131,9
cp1 4338,0826 N -7209,082 cp2 4338,0866 N -7209,092 dw 0,525 bw 124,9 dbp 0,038 bbp 126,5 cd 0,015 cb 119,9
cp1 4338,0758 N -7209,07 cp2 4338,0812 N -7209,079 dw 0,504 bw 124,9 dbp 0,017 bbp 128,9 cd 0,017 cb 124,7
cp1 4338,069 N -7209,063 cp2 4338,0758 N -7209,07 dw 0,489 bw 124,4 dbp 0,101 bbp 121,1 cd 0,016 cb 142,6
cp1 4338,0608 N -7209,05 cp2 4338,0659 N -7209,059 dw 0,467 bw 124,0 dbp 0,079 bbp 117,9 cd 0,016 cb 129,3
cp1 4338,0565 N -7209,035 cp2 4338,0597 N -7209,047 dw 0,446 bw 124,6 dbp 0,058 bbp 120,4 cd 0,017 cb 107,9
cp1 4338,0527 N -7209,02 cp2 4338,0554 N -7209,031 dw 0,425 bw 125,2 dbp 0,038 bbp 125,6 cd 0,017 cb 111,5
cp1 4338,0454 N -7209,004 cp2 4338,0503 N -7209,014 dw 0,400 bw 125,5 dbp 0,013 bbp 136,1 cd 0,016 cb 124,6
cp1 4338,0414 N -7208,994 cp2 4338,0454 N -7209,004 dw 0,384 bw 125,9 dbp 0,100 bbp 126,1 cd 0,016 cb 118,0
cp1 4338,0356 N -7208,98 cp2 4338,0401 N -7208,991 dw 0,364 bw 126,1 dbp 0,080 bbp 127,3 cd 0,016 cb 118,0
cp1 4338,0288 N -7208,969 cp2 4338,0341 N -7208,978 dw 0,344 bw 125,9 dbp 0,060 bbp 126,4 cd 0,016 cb 126,8
cp1 4338,0246 N -7208,959 cp2 4338,0288 N -7208,969 dw 0,329 bw 126,2 dbp 0,045 bbp 128,6 cd 0,015 cb 119,9
cp1 4338,018 N -7208,947 cp2 4338,0233 N -7208,957 dw 0,309 bw 126,3 dbp 0,025 bbp 131,8 cd 0,016 cb 124,6
cp1 4338,0133 N -7208,937 cp2 4338,018 N -7208,947 dw 0,293 bw 126,4 dbp 0,099 bbp 125,0 cd 0,016 cb 124,6
cp1 4338,0093 N -7208,926 cp2 4338,0133 N -7208,937 dw 0,277 bw 126,8 dbp 0,083 bbp 126,4 cd 0,016 cb 118,0
cp1 4338,0033 N -7208,914 cp2 4338,0082 N -7208,923 dw 0,258 bw 126,9 dbp 0,064 bbp 126,3 cd 0,014 cb 129,6
cp1 4337,9974 N -7208,907 cp2 4338,0033 N -7208,914 dw 0,242 bw 126,3 dbp 0,048 bbp 123,2 cd 0,016 cb 135,9
cp1 4337,99 N -7208,893 cp2 4337,9948 N -7208,903 dw 0,220 bw 126,3 dbp 0,027 bbp 120,6 cd 0,016 cb 124,7
cp1 4337,9866 N -7208,883 cp2 4337,99 N -7208,893 dw 0,204 bw 126,9 dbp 0,099 bbp 126,4 cd 0,016 cb 118,0
cp1 4337,9815 N -7208,869 cp2 4337,9855 N -7208,88 dw 0,185 bw 128,1 dbp 0,081 bbp 129,1 cd 0,016 cb 118,0
cp1 4337,9767 N -7208,856 cp2 4337,9804 N -7208,866 dw 0,166 bw 129,8 dbp 0,061 bbp 134,1 cd 0,015 cb 113,0
cp1 4337,9686 N -7208,84 cp2 4337,9736 N -7208,85 dw 0,140 bw 130,5 dbp 0,036 bbp 139,8 cd 0,016 cb 122,3
cp1 4337,9599 N -7208,827 cp2 4337,9658 N -7208,835 dw 0,117 bw 129,6 dbp 0,012 bbp 148,2 cd 0,016 cb 136,1
cp1 4337,9529 N -7208,812 cp2 4337,9575 N -7208,823 dw 0,092 bw 131,6 dbp 0,090 bbp 125,4 cd 0,017 cb 122,5
cp1 4337,9493 N -7208,802 cp2 4337,9529 N -7208,812 dw 0,079 bw 134,7 dbp 0,076 bbp 127,5 cd 0,014 cb 114,7
cp1 4337,9434 N -7208,789 cp2 4337,948 N -7208,799 dw 0,058 bw 138,9 dbp 0,055 bbp 129,2 cd 0,015 cb 119,9
cp1 4337,9349 N -7208,776 cp2 4337,9408 N -7208,784 dw 0,035 bw 143,4 dbp 0,032 bbp 126,9 cd 0,016 cb 131,3
cp1 4337,9267 N -7208,765 cp2 4337,9327 N -7208,773 dw 0,014 bw 152,9 dbp 0,094 bbp 123,1 cd 0,014 cb 137,1

aw 4337,62 N -7209 bp 4337,8765 N -7208,806

cp1 4337,9048 N -7208,761 cp2 4337,9141 N -7208,759 dw 0,616 bw 211,2 dbp 0,079 bbp 228,1 cd 0,016 cb 191,9
cp1 4337,8894 N -7208,768 cp2 4337,8978 N -7208,764 dw 0,587 bw 212,0 dbp 0,057 bbp 245,5 cd 0,017 cb 194,6
cp1 4337,8768 N -7208,783 cp2 4337,8823 N -7208,774 dw 0,556 bw 211,3 dbp 0,030 bbp 268,5 cd 0,016 cb 233,2
cp1 4337,8636 N -7208,789 cp2 4337,8723 N -7208,787 dw 0,532 bw 212,0 dbp 0,082 bbp 214,0 cd 0,016 cb 191,9
cp1 4337,85 N -7208,795 cp2 4337,8595 N -7208,791 dw 0,504 bw 212,7 dbp 0,056 bbp 221,8 cd 0,020 cb 199,1
cp1 4337,8373 N -7208,803 cp2 4337,8452 N -7208,798 dw 0,479 bw 213,3 dbp 0,033 bbp 236,4 cd 0,017 cb 206,9
cp1 4337,8291 N -7208,807 cp2 4337,8373 N -7208,803 dw 0,464 bw 213,7 dbp 0,092 bbp 212,5 cd 0,016 cb 199,9
cp1 4337,8186 N -7208,813 cp2 4337,8255 N -7208,809 dw 0,443 bw 214,1 dbp 0,071 bbp 214,8 cd 0,015 cb 205,7
cp1 4337,8081 N -7208,823 cp2 4337,8151 N -7208,816 dw 0,421 bw 214,2 dbp 0,049 bbp 215,4 cd 0,016 cb 214,3
cp1 4337,8006 N -7208,828 cp2 4337,8081 N -7208,823 dw 0,405 bw 214,6 dbp 0,033 bbp 221,2 cd 0,017 cb 203,4
cp1 4337,7918 N -7208,836 cp2 4337,7982 N -7208,83 dw 0,386 bw 214,6 dbp 0,089 bbp 208,7 cd 0,014 cb 217,7
cp1 4337,7804 N -7208,839 cp2 4337,7882 N -7208,837 dw 0,367 bw 216,2 dbp 0,069 bbp 215,9 cd 0,014 cb 270,0
cp1 4337,77 N -7208,823 cp2 4337,7739 N -7208,833 dw 0,364 bw 220,4 dbp 0,070 bbp 237,9 cd 0,014 cb 122,1

159

cp1 4337,7479 N -7208,819 cp2 4337,7573 N -7208,817 dw 0,338 bw 225,7 dbp 0,066 bbp 273,3 cd 0,018 cb 186,9
cp1 4337,7347 N -7208,84 cp2 4337,7386 N -7208,83 dw 0,301 bw 225,3 dbp 0,047 bbp 307,7 cd 0,016 cb 242,0
cp1 4337,7318 N -7208,865 cp2 4337,7332 N -7208,854 dw 0,275 bw 221,2 dbp 0,034 bbp 352,7 cd 0,014 cb 260,9
cp1 4337,7161 N -7208,873 cp2 4337,7234 N -7208,872 dw 0,246 bw 223,7 dbp 0,079 bbp 214,6 cd 0,014 cb 185,4
cp1 4337,7015 N -7208,879 cp2 4337,7099 N -7208,874 dw 0,222 bw 227,3 dbp 0,054 bbp 225,4 cd 0,016 cb 196,2
cp1 4337,6883 N -7208,889 cp2 4337,6968 N -7208,882 dw 0,196 bw 229,7 dbp 0,028 bbp 240,5 cd 0,017 cb 211,4
cp1 4337,6805 N -7208,893 cp2 4337,6883 N -7208,889 dw 0,181 bw 231,8 dbp 0,091 bbp 211,4 cd 0,016 cb 204,6
cp1 4337,6716 N -7208,898 cp2 4337,6784 N -7208,894 dw 0,167 bw 235,4 dbp 0,073 bbp 214,8 cd 0,014 cb 199,0
cp1 4337,6607 N -7208,906 cp2 4337,6681 N -7208,9 dw 0,146 bw 238,8 dbp 0,050 bbp 215,9 cd 0,016 cb 209,4
cp1 4337,6514 N -7208,914 cp2 4337,6587 N -7208,908 dw 0,128 bw 243,2 dbp 0,029 bbp 219,3 cd 0,016 cb 212,8
cp1 4337,6432 N -7208,918 cp2 4337,6514 N -7208,914 dw 0,117 bw 248,7 dbp 0,090 bbp 212,2 cd 0,016 cb 199,9
cp1 4337,6325 N -7208,923 cp2 4337,6408 N -7208,92 dw 0,106 bw 257,6 dbp 0,071 bbp 216,9 cd 0,016 cb 196,2
cp1 4337,62 N -7208,932 cp2 4337,6276 N -7208,927 dw 0,090 bw 270,0 dbp 0,045 bbp 221,0 cd 0,016 cb 208,1
cp1 4337,6109 N -7208,941 cp2 4337,6177 N -7208,934 dw 0,080 bw 282,6 dbp 0,024 bbp 226,5 cd 0,016 cb 217,4
cp1 4337,6031 N -7208,964 cp2 4337,6064 N -7208,954 dw 0,056 bw 303,4 dbp 0,082 bbp 195,5 cd 0,016 cb 250,9
cp1 4337,602 N -7208,996 cp2 4337,6014 N -7208,977 dw 0,034 bw 350,7 dbp 0,079 bbp 165,6 cd 0,025 cb 271,7
cp1 4337,6144 N -7209,019 cp2 4337,6079 N -7209,011 dw 0,028 bw 68,1 dbp 0,112 bbp 152,6 cd 0,016 cb 317,8

aw 4337,8 N -7209,3 bp 4337,6504 N -7209,08

cp1 4337,6194 N -7209,034 cp2 4337,616 N -7209,022 dw 0,489 bw 313,3 dbp 0,085 bbp 313,5 cd 0,017 cb 287,9
cp1 4337,6256 N -7209,048 cp2 4337,6216 N -7209,04 dw 0,467 bw 313,9 dbp 0,062 bbp 318,0 cd 0,013 cb 304,7
cp1 4337,6324 N -7209,059 cp2 4337,6274 N -7209,051 dw 0,448 bw 313,9 dbp 0,044 bbp 319,5 cd 0,013 cb 310,1
cp1 4337,6414 N -7209,07 cp2 4337,6353 N -7209,062 dw 0,426 bw 313,7 dbp 0,022 bbp 322,9 cd 0,015 cb 314,0
cp1 4337,6477 N -7209,084 cp2 4337,6434 N -7209,074 dw 0,405 bw 314,3 dbp 0,085 bbp 310,5 cd 0,016 cb 298,0
cp1 4337,6529 N -7209,098 cp2 4337,6491 N -7209,088 dw 0,384 bw 315,1 dbp 0,064 bbp 314,2 cd 0,016 cb 298,0
cp1 4337,6612 N -7209,114 cp2 4337,6557 N -7209,104 dw 0,358 bw 315,9 dbp 0,038 bbp 320,8 cd 0,018 cb 306,6
cp1 4337,6708 N -7209,129 cp2 4337,6645 N -7209,12 dw 0,332 bw 316,1 dbp 0,013 bbp 335,8 cd 0,016 cb 317,8
cp1 4337,6762 N -7209,143 cp2 4337,6724 N -7209,132 dw 0,312 bw 317,3 dbp 0,086 bbp 312,2 cd 0,015 cb 297,4
cp1 4337,682 N -7209,16 cp2 4337,6781 N -7209,148 dw 0,289 bw 319,3 dbp 0,062 bbp 319,2 cd 0,017 cb 294,0
cp1 4337,6887 N -7209,178 cp2 4337,6846 N -7209,167 dw 0,264 bw 321,4 dbp 0,038 bbp 334,3 cd 0,017 cb 296,3
cp1 4337,6984 N -7209,195 cp2 4337,693 N -7209,186 dw 0,236 bw 322,9 dbp 0,018 bbp 18,1 cd 0,015 cb 311,9
cp1 4337,7043 N -7209,203 cp2 4337,6984 N -7209,195 dw 0,220 bw 323,7 dbp 0,089 bbp 308,2 cd 0,017 cb 313,3
cp1 4337,7089 N -7209,216 cp2 4337,7054 N -7209,205 dw 0,204 bw 326,1 dbp 0,072 bbp 311,6 cd 0,016 cb 293,0
cp1 4337,7173 N -7209,229 cp2 4337,7114 N -7209,22 dw 0,180 bw 328,1 dbp 0,047 bbp 311,5 cd 0,016 cb 317,9
cp1 4337,7212 N -7209,243 cp2 4337,7185 N -7209,232 dw 0,164 bw 332,2 dbp 0,029 bbp 325,0 cd 0,017 cb 291,5
cp1 4337,7261 N -7209,259 cp2 4337,723 N -7209,249 dw 0,149 bw 337,6 dbp 0,085 bbp 313,9 cd 0,014 cb 289,0
cp1 4337,7308 N -7209,274 cp2 4337,7278 N -7209,264 dw 0,133 bw 345,3 dbp 0,063 bbp 322,5 cd 0,016 cb 289,0
cp1 4337,7386 N -7209,291 cp2 4337,7338 N -7209,282 dw 0,115 bw 354,1 dbp 0,039 bbp 335,2 cd 0,016 cb 304,6
cp1 4337,7498 N -7209,304 cp2 4337,7436 N -7209,298 dw 0,094 bw 2,3 dbp 0,015 bbp 270,0 cd 0,014 cb 320,5
cp1 4337,7643 N -7209,309 cp2 4337,7563 N -7209,307 dw 0,068 bw 10,0 dbp 0,085 bbp 298,3 cd 0,015 cb 347,2
cp1 4337,7764 N -7209,312 cp2 4337,7685 N -7209,311 dw 0,047 bw 18,9 dbp 0,073 bbp 283,7 cd 0,014 cb 350,7

160

Figure B.1: Waypoint following with basing points every 100 m

161

Figure B.2: Waypoint following test with basingpoints on waypoints

162

Appendix C

Schematics overview

163

Figure C.1: 2nd order Butterworth Filter for the 2 axis tilt sensor

164

Figure C.2: Conditioning circuit for the analog motor velocitiy and motor current inputs

165

Figure C.3: Schematic of DAC connections

166

Appendix D

Source codes

D.1 analogin.lib

/*** Beginheader */
#ifndef __analogin_LIB
#define __analogin_LIB
/*** Endheader */

/* START LIBRARY DESCRIPTION ***
analogin.lib
Goetz Dietrich, 2005

version 0.91

- no sequencing
- 0..5V input range (0..2xRef)
- sensor_high_centered new
- tm_hc new (time check for high center) must be set to 0 in main
- wheel_air new (wheel that is in the air) must be set to 4 in main
- tilt_hc[2] new (reference tilt angle)

will set up and read a Analog Devices EVAL-AD7490BC evaluation kit 12 bit A/D convertor which uses an SPI interface.
Connected to serial port B as outlined below:
AD7490 RCM Jackrabbit
GND GND
VDD +5V
SCLK PB0
CS PD0
DIN PC4 TXB
DOUT PC5 RXB

ReadAD
read_sensors
sensor_range
sensor_high_centered

D.1 analogin.lib 167

END DESCRIPTION ***/

/*** BeginHeader ReadAD */
float ReadAD (char *Command, int Samples);
extern int Value;
extern int Count, data_one, data_one_comp;
extern char data[3];
extern unsigned long i;
extern float Voltage;
extern unsigned long data_all;

#class auto

// SPI library definitions
//Power-on state:

#define WRITE 0x80 /* 1xxx xxxx xxxx xxxx write to conversion register */
#define XREF2 0x00 /* xxxx xxxx xxxx xx1x range from 0 V to 2x Vref V */
#define POWER 0x03 /* xxxx xx11 xxxx xxxx no power up delay */
//

// Channel Selection
#define IN00 0x00 /* xx00 00xx xxxx xxxx AIN0 */
#define IN01 0x04 /* xx00 01xx xxxx xxxx AIN1 */
#define IN02 0x08 /* xx00 10xx xxxx xxxx AIN2 */
#define IN03 0x0C /* 0011 AIN3 */
#define IN04 0x10 /* 0100 AIN4 */
#define IN05 0x14 /* 0101 AIN5 */
#define IN06 0x18 /* 0110 AIN6 */
#define IN07 0x1C /* 0111 AIN7 */
#define IN08 0x20 /* 1000 AIN8 */
#define IN09 0x24 /* 1001 AIN9 */
#define IN10 0x28 /* 1010 AIN10 */
#define IN11 0x2C /* 1011 AIN11 */
#define IN12 0x30 /* 1100 AIN12 */
#define IN13 0x34 /* 1101 AIN13 */
#define IN14 0x38 /* 1110 AIN14 */
#define IN15 0x3C /* 1111 AIN15 */
// Actions definitions
//

const char READ_AIN00[] =
{WRITE| POWER| IN00, XREF2};
const char READ_AIN01[] =
{WRITE| POWER| IN01, XREF2};
const char READ_AIN02[] =
{WRITE| POWER| IN02, XREF2};
const char READ_AIN03[] =
{WRITE| POWER| IN03, XREF2};
const char READ_AIN04[] =
{WRITE| POWER| IN04, XREF2};
const char READ_AIN05[] =

D.1 analogin.lib 168

{WRITE| POWER| IN05, XREF2};
const char READ_AIN06[] =
{WRITE| POWER| IN06, XREF2};
const char READ_AIN07[] =
{WRITE| POWER| IN07, XREF2};
const char READ_AIN08[] =
{WRITE| POWER| IN08, XREF2};
const char READ_AIN09[] =
{WRITE| POWER| IN09, XREF2};
const char READ_AIN10[] =
{WRITE| POWER| IN10, XREF2};
const char READ_AIN11[] =
{WRITE| POWER| IN11, XREF2};
const char READ_AIN12[] =
{WRITE| POWER| IN12, XREF2};
const char READ_AIN13[] =
{WRITE| POWER| IN13, XREF2};
const char READ_AIN14[] =
{WRITE| POWER| IN14, XREF2};
const char READ_AIN15[] =
{WRITE| POWER| IN15, XREF2};

/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
float ReadAD (char *Command, int Samples) <analogin.lib>

SYNTAX: float ReadAD (char *Command, int Samples);

DESCRIPTION: will command the A/D to take a reading
on the selected channel. It will take the average of the

specified number of readings and convert the value to volts using the
predefined scale factor.

PARAMETER1: address of command bytes - must be 3 bytes
PARAMETER2: (int) number of readings to average
RETURN VALUE: float volts needs to be scaled by scale factor

KEY WORDS:

END DESCRIPTION ***/

float ReadAD (char *Command, int Samples)
{

int Count, data_one;
int data_one_comp; // twos complement if needed
char data[2]; // conversion result as a 16 bit/2 byte data word
long data_all; // all data samples added
float Voltage; // return value

SPI_Binit();
BitWrPortI (PDDR, &PDDRShadow, 1, 0); // PD0 =1
BitWrPortI (PDDDR, &PDDDRShadow, 1, 0); // PD0 = output
data_all = 0L; // reset data_all

D.1 analogin.lib 169

for (Count = 1; Count<= Samples; Count++) // loop for averaging the number of samples
{

BitWrPortI (PDDR, &PDDRShadow, 0, 0); // enable /CS
SPI_BWrRd (Command, &data, 2); // write the command to the ADC and read back the conversion result
BitWrPortI (PDDR, &PDDRShadow, 1, 0); // disable /CS
data[0] = 0x0F & data[0]; // extract the first four address bits
data_one = data[0]*256 + data[1]; // convert the conversion result into an integer
if(data_one >= 2048)
{

data_one_comp = ~(data_one); //+61441);
data_one = 0x0FFF & data_one_comp; // data_one = data_one_comp;

} // end if
data_all += (data_one); // update accumulator
for (data_one_comp=0; data_one_comp<100; data_one_comp++); // cheap time delay
} // end for
Voltage = (float)data_all / Samples;
} // end function

//

/*** BeginHeader read_sensors */
void read_sensors();
#use SPI_B.lib
#use drive.lib
extern float scale_motor;
extern float scale_tilt;
extern float scale_velocity;
extern float output[15];
/*** EndHeader */

float scale_motor; // scale factor for motor currents
float scale_tilt; // scale factor for tilt sensors
float scale_velocity;
float output[15];

/* START FUNCTION DESCRIPTION ******************************
void read_sensors() <analogin.lib>

SYNTAX: void read_sensors;

DESCRIPTION: will command the A/D to take a reading
on the selected channels. It will take the average of the

specified number of readings and convert the value to whatever
the user wants by scale factors

PARAMETER1: address of command bytes - must be 3 bytes
PARAMETER2: (int) number of readings to average
RETURN VALUE: float volts needs to be scaled by scale factor

KEY WORDS:

END DESCRIPTION ***/

void read_sensors()
{

D.1 analogin.lib 170

int tilt_lim;
tilt_lim = 45;
scale_motor = 5/4096.0*2; // 2A = 1V and 2.5 V reference
scale_tilt = 5/4096.0;
scale_velocity = 5/4096.0*120*60/2; // 1V = 120Hz Hall frequency
SPI_Binit;
BitWrPortI (PDDR, &PDDRShadow, 1, 0); // PD0 = 1
BitWrPortI (PDDDR, &PDDDRShadow, 1, 0); // PD0 = output
output[0] = scale_motor*ReadAD(READ_AIN00, 400); // motor current A
output[1] = scale_motor*ReadAD(READ_AIN01, 400); // motor current B
output[2] = scale_motor*ReadAD(READ_AIN02, 400); // motor current C
output[3] = scale_motor*ReadAD(READ_AIN03, 400); // motor current D
output[4] = scale_velocity*ReadAD(READ_AIN04, 400); // motor velocity A
output[5] = scale_velocity*ReadAD(READ_AIN05, 400); // motor velocity B
output[6] = scale_velocity*ReadAD(READ_AIN06, 400); // motor velocity C
output[7] = scale_velocity*ReadAD(READ_AIN07, 400); // motor velocity D
output[8] = asin(scale_tilt*ReadAD(READ_AIN08, 400)); // motor tilt pitch
output[9] = asin(scale_tilt*ReadAD(READ_AIN09, 400)); // motor tilt roll
printf("currents A,B,C,D are: %f\n", output[0]);
/*printf("velocities A,B,C,D are: %d, %d, %d\n", (int)output[4],

(int)output[5], (int)output[6]);
*/

} // end read_sensors

/*** BeginHeader sensor_range */
int sensor_range();
#use drive.lib
extern float output[15];
extern int wp_start;
/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
void sensor_range() <analogin.lib>

SYNTAX: void sensor_range();

DESCRIPTION: will check the sensors readings and look if they exceed the limit
and change drive mode

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/

int sensor_range()
{

if (abs(output[8]) >= tilt_lim || abs(output[9]) >= tilt_lim)
{

stop(motor_speed, motor_speed_increment);

D.1 analogin.lib 171

backwards_tilt();
while(1)
{

costate
{

waitfor(DelayMs(4000));
turn_right(motor_speed, angle);
waitfor(DelayMs(18000));

} // end costate
costate
{

waitfor(DelayMs(22000));
stop(motor_speed, motor_speed_increment);
if(drive_mode == 1)
{

forward_full();
} // end if
else
{

forward_partial();
} // end if
wp_start = 0;
return 0;

} // end costate

} // end while
}
else
{

return 1;
}

} // end function

//
/*** BeginHeader sensor_high_centered */
int sensor_high_centered(int *tm_hc, int *wheel_air);
extern float output[15];
extern float tilt_hc[2];
/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
void sensor_high_centered(int tm_hc, int wheel_air) <analogin.lib>

SYNTAX: void sensor_high_centered(int tm_hc, int wheel_air);

DESCRIPTION: will check the sensors readings and look for a high centered position (10 seconds)
and set drive_mode to 3 (high_centered)

RETURN VALUE: 1 - if high centered
0- otherwise

KEY WORDS:

D.1 analogin.lib 172

END DESCRIPTION ***/

int sensor_high_centered(int *tm_hc, int *wheel_air)
{

int i; // count motor_speeds
if(tm_hc == 10)
{

tm_hc = 0;
wheel_air = 4;
drive_mode = 3;
return 1;

} // end if
else if(wheel_air <= 3)
{

if(output[wheel_air]<0.3 && output[wheel_air+4]>4800)
{

if(abs(tilt_hc[0]-output[8])<5 && abs(tilt_hc[1]-output[9])<5)
{

tm_hc++;
} // end if
else

{
tm_hc = 0;

wheel_air = 4;
} // end else

} // end if
return 0;

} // end else if
else if(wheel_air == 5)
{

tm_hc = 0;
return 0;

} // end else if
else
{

for(i=0;i<4;i++) // count motor speeds
{

if(output[i]<0.3 && output[i+4]>4800)
{

tilt_hc[0] = output[8];
tilt_hc[1] = output[9];
tm_hc++;
wheel_air = i;
return 0;

} // end if
} // end for

} // end else
} // end function

/*** BeginHeader */

#endif
/*** EndHeader */

D.2 drive.lib 173

D.2 drive.lib

/*** BeginHeader */
#ifndef __DRIVE_LIB
#define __DRIVE_LIB
/*** EndHeader */

/* START LIBRARY DESCRIPTION ***
17mar2005
drive.lib
Goetz Dietrich, 2005
- switched motor_speed[0] with motor_speed[2]
- got_stuck not really implemented because no adc available
- backup_tilt implemented

functions to drive the robot in the wanted direction

faster_forwards
slower_forwards
turn_right
turn_left
stop
SwapBytes
SendToDAC
UpdateMotorOutput
DispStr
forward_full
forward_partial
backwards_tilt
manual_drive
wp_follow_full
wp_follow_partial
high_centered

END DESCRIPTION ***/

/*** BeginHeader */

#define SPI_SER_D
// Definition of the output channels

#define DACA 0x1000 // 12 bit control register filled up with zeros 0001 ...(fast mode)
#define DACB 0x5000 // 0101 xxxx xxxx xxxx is DACB
#define DACC 0x9000 // 1001 xxxx xxxx xxxx is DACC
#define DACD 0xD000 // 1101 xxxx xxxx xxxx

#define Akey 65
#define DownArrow 25

const int zero_output = 2048; // = 0 volts output
const int max_output = 1220; //1220 = 3 volts output
char key_input;

/*** EndHeader */

D.2 drive.lib 174

//
/*** BeginHeader faster_forwards */
int *faster_forwards(int *motor_speed, int motor_speed_increment);
/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
faster_forwards() <drive.lib>

SYNTAX: void faster_forwards();

DESCRIPTION: speeds up the robot 5 percent for hitting the key"w"
or slows down when driving backwards

PARAMETER1: None

RETURN VALUE: None

KEY WORDS: drive

END DESCRIPTION ***/
int *faster_forwards(int *motor_speed, int motor_speed_increment)
{

if ((motor_speed[0] <= (100 - motor_speed_increment)) // if all motors are able to run faster
&& (motor_speed[1] <= (100 - motor_speed_increment))
&& (motor_speed[2] <= (100 - motor_speed_increment))
&& (motor_speed[3] <= (100 - motor_speed_increment)))

{
motor_speed[0] += motor_speed_increment; // rise them up to a 100%
motor_speed[1] += motor_speed_increment;
motor_speed[2] += motor_speed_increment;
motor_speed[3] += motor_speed_increment;
UpdateMotorOutput(); // sends the new value of motor_speed to the DAC
return motor_speed;

} // end if

} // end function

//
/*** BeginHeader slower_forwards */
int *slower_forwards(int *motor_speed, int motor_speed_increment);
/*** EndHeader */
/* START FUNCTION DESCRIPTION ******************************
int *slower_forwards(int *motor_speed) <drive.lib>

SYNTAX: int *slower_forwards(int motor_speed[4]);

DESCRIPTION: slows down the robot 5 percent for hitting the key "s"

PARAMETER1: None

RETURN VALUE: None

KEY WORDS: drive

END DESCRIPTION ***/
int *slower_forwards(int *motor_speed, int motor_speed_increment)

D.2 drive.lib 175

{
if(motor_speed[0] >= (motor_speed_increment - 100) // if all motors are faster than 90% backwards

&& (motor_speed[1] >= (motor_speed_increment - 100))
&& (motor_speed[2] >= (motor_speed_increment - 100))
&& (motor_speed[3] >= (motor_speed_increment - 100)))

{
motor_speed[0] -= motor_speed_increment; // set motor speeds limit to 100% backwards
motor_speed[1] -= motor_speed_increment;
motor_speed[2] -= motor_speed_increment;
motor_speed[3] -= motor_speed_increment;
UpdateMotorOutput(); // update DAC
return motor_speed;

} // end if
} // end function

//
/*** BeginHeader turn_right */
int *turn_right(int *motor_speed, int angle);
/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
turn_right(int *motor_speed, int angle) <drive.lib>

SYNTAX: ;

DESCRIPTION:

PARAMETER1:

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/
int *turn_right(int *motor_speed, int angle)
{

if((motor_speed[2]>=100) && (motor_speed[1]>=100)
&& motor_speed[0]>=(angle-100)
&& motor_speed[3]>=(angle-100))
{

motor_speed[0] -= angle;
motor_speed[3] -= angle;
UpdateMotorOutput();

} // end if
else if(motor_speed[0]<=(-100)
&& motor_speed[3]<=(-100)
&& motor_speed[2]<=(100-angle)
&& motor_speed[1]<=(100-angle))
{

motor_speed[2] += angle;
motor_speed[1] += angle;
UpdateMotorOutput();

} // end if

D.2 drive.lib 176

else if(motor_speed[2]<=(100-(angle/2))
&& motor_speed[1]<=(100-(angle/2))
&& motor_speed[0]>=(angle/2-100)
&& motor_speed[3]>=(angle/2-100))
{

motor_speed[2] += angle/2;
motor_speed[1] += angle/2;
motor_speed[0] -= angle/2;
motor_speed[3] -= angle/2;
UpdateMotorOutput();

} // end if
return motor_speed;

} // end function

//
/*** BeginHeader turn_left */
int *turn_left(int *motor_speed, int angle);
/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
int *turn_left(int *motor_speed, int angle) <drive.lib>

SYNTAX: ;

DESCRIPTION:

PARAMETER1:

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/
int *turn_left(int *motor_speed, int angle)
{

if(motor_speed[0]>=100 && motor_speed[3]>=100
&& motor_speed[2]>=(angle-100)
&& motor_speed[1]>=(angle-100))
{

motor_speed[2] -= angle;
motor_speed[1] -= angle;
UpdateMotorOutput();

} // end if
else if(motor_speed[2]<=-100
&& motor_speed[1]<=-100
&& motor_speed[0]<=(100-angle)
&& motor_speed[3]<=(100-angle))
{

motor_speed[0] += angle;
motor_speed[3] += angle;
UpdateMotorOutput();

} // end if
else if(motor_speed[0]<=(100-(angle/2))
&& motor_speed[3]<=(100-(angle/2))

D.2 drive.lib 177

&& motor_speed[2]>=((angle/2)-100)
&& motor_speed[1]>=((angle/2)-100))
{

motor_speed[2] -= angle/2;
motor_speed[1] -= angle/2;
motor_speed[0] += angle/2;
motor_speed[3] += angle/2;
UpdateMotorOutput();

} // end if
return motor_speed;

} // end function

//
/*** BeginHeader stop */
int *stop(int *motor_speed, int motor_speed_increment);
/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
int *stop(int *motor_speed) <drive.lib>

SYNTAX: ;

DESCRIPTION:

PARAMETER1:

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/
int *stop(int *motor_speed, int motor_speed_increment)
{

int k;
while (1){

if((motor_speed[0]>=20)&&(motor_speed[1]>=20)
&&(motor_speed[2]>=20)&&(motor_speed[3]>=20))
{
costate {

waitfor(DelayMs(40));
slower_forwards(motor_speed, motor_speed_increment);
UpdateMotorOutput();
} // end costate

} // end if
else if((motor_speed[0]<=-20)&&(motor_speed[1]<=-20)
&&(motor_speed[2]<=-20)&&(motor_speed[3]<=-20))
{
costate {

waitfor (DelayMs(40));
faster_forwards(motor_speed, motor_speed_increment);
UpdateMotorOutput();
} // end costate

} // end if
else if(motor_speed[0]>=5&&motor_speed[1]>=5

D.2 drive.lib 178

&& motor_speed[2]<=-5&&motor_speed[3]<=-5)
{
costate {

waitfor(DelayMs(40));
turn_left(motor_speed, angle);
UpdateMotorOutput();
} // end costate

} // end if
else if(motor_speed[2]>=5&&motor_speed[3]>=5
&& motor_speed[0]<=-5&&motor_speed[1]<=-5)
{
costate {

waitfor(DelayMs(40));
turn_right(motor_speed, angle);
UpdateMotorOutput();
} // end costate

} // end if
else
{
for(k=0;k<4;k++)

{
motor_speed[k]=0;
UpdateMotorOutput();
} //end for

return motor_speed;
} // end else

} // end while
} // end main

//
/*** BeginHeader DispStr */
void DispStr(int x, int y, char *s);
extern int x;
extern int y;
/*** EndHeader */
int x;
int y;
/* START FUNCTION DESCRIPTION ******************************
void DispStr(int x, int y, char *s) <drive.lib>

SYNTAX: ;

DESCRIPTION:

PARAMETER1:

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/
// Set the STDIO cursor location and display a string
void DispStr(int x, int y, char *s)
{

D.2 drive.lib 179

x += 0x20;
y += 0x20;
printf ("\x1B=%c%c%s", x, y, s);

}

//
/*** BeginHeader SwapBytes */
int SwapBytes (int value);
extern int i0;
/*** EndHeader */
int i0;
/* START FUNCTION DESCRIPTION ******************************
SwapBytes <drive.lib>

SYNTAX: int SwapBytes (int value) ;

DESCRIPTION: The function SwapBytes is used to swap the order of the two
byte output value. This is necessary because the Rabbit and
Dynamic C are Little Endian - the LS byte is sent first. The
MAX 536 requires that the MS byte be transmitted first.

PARAMETER1: 2 byte value

RETURN VALUE: swapped 2 byte value

KEY WORDS:

END DESCRIPTION ***/

int SwapBytes (int value)
{ int i0;

i0 = (value<<8) & 0xFF00; // put low byte into high byte
i0 |= (value>>8) & 0x00FF; // put high byte into low byte
return i0;

}
//
/*** BeginHeader SendToDAC */
void SendToDAC (int message);

#ifdef SPI_SER_B
#undef SPI_SER_B
#define SPI_SER_D
#endif
#ifndef SPI_SER_D
#define SPI_SER_D
#endif
#ifdef SPI_SER_D
#use SPI.lib
#endif

/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************

D.2 drive.lib 180

SendToDAC (int message) <drive.lib>

SYNTAX: void SendToDAC (int message);

DESCRIPTION: sends message to the MAX536

PARAMETER1: message wanted to be send to the MAX536

RETURN VALUE: NONE

KEY WORDS:

END DESCRIPTION ***/

void SendToDAC (int message)
{

WrPortI (PBDDR, &PBDDRShadow, 0xFF); // PB = all output
BitWrPortI (PBDR, &PBDRShadow, 0, 2); // CS = 0 enable CS on PB2
SPIWrite(&message, 2);
BitWrPortI (PBDR, &PBDRShadow, 1, 2); // CS =y 1 disable CS

}

//
/*** BeginHeader UpdateMotorOutput */

void UpdateMotorOutput ();

extern char display1[128];
extern char display2[128];
extern char display3[128];
extern char display4[128];
extern char fstring[256];

#ifdef SPI_SER_B
#undef SPI_SER_B
#define SPI_SER_D
#endif

#ifndef SPI_SER_D
#define SPI_SER_D
#endif

#ifdef SPI_SER_D
#use SPI.lib
#endif

/*** EndHeader */
char display1[128];
char display2[128];
char display3[128];
char display4[128];

/* START FUNCTION DESCRIPTION ******************************
UpdateMotorOutput () <drive.lib>

D.2 drive.lib 181

SYNTAX: void UpdateMotorOutput () ;

DESCRIPTION:

PARAMETER1:

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/
void UpdateMotorOutput ()
{

SPIinit ();
SendToDAC(SwapBytes((int)(zero_output+((long)max_output*motor_speed[0]/100))|DACA));
SendToDAC(SwapBytes((int)(zero_output+((long)max_output*motor_speed[1]/100))|DACB));
SendToDAC(SwapBytes((int)(zero_output+((long)max_output*motor_speed[2]/100))|DACC));
SendToDAC(SwapBytes((int)(zero_output+((long)max_output*motor_speed[3]/100))|DACD));
printf("motorspeeds A,B,C,D are: %d, %d, %d, %d\n", motor_speed[0], motor_speed[1],

motor_speed[2], motor_speed[3]);
}

//

/*** BeginHeader forward_full */
void forward_full();

/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
void forward_full <drive.lib>

SYNTAX: void forward_full() ;

DESCRIPTION: checks if motor speeds are on 100 and sets them

PARAMETER1:

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/

void forward_full()
{

while(motor_speed[0] != 100 && motor_speed[3] != 100)
{

costate
{

faster_forwards(motor_speed, motor_speed_increment);
waitfor (DelayMs(200));

} // end costate

D.2 drive.lib 182

} // end while

} // end function

//

/*** BeginHeader forward_partial */
void forward_partial();

/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************
void forward_partial <drive.lib>

SYNTAX: void forward_partial() ;

DESCRIPTION: checks if motor speeds are on 100 and sets them

PARAMETER1:

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/

void forward_partial()
{

while(motor_speed[0] != 60 && motor_speed[3] != 60)
{

costate
{

if(motor_speed[1] <= 50 && motor_speed[2] <= 50)
{

faster_forwards(motor_speed, motor_speed_increment);
} // end if
else if(motor_speed[0] >=70 && motor_speed[3] >= 70)
{

slower_forwards(motor_speed, motor_speed_increment);
} // end else if
waitfor (DelayMs(200));

} // end costate
} // end while

} // end function

//

/*** BeginHeader backwards_tilt */
void backwards_tilt();

/*** EndHeader */

/* START FUNCTION DESCRIPTION ******************************

D.2 drive.lib 183

void backwards_tilt <drive.lib>

SYNTAX: void backwards_tilt() ;

DESCRIPTION: backs up Cool Robot in case of high tilt sensors

PARAMETER1:

RETURN VALUE:

KEY WORDS:

END DESCRIPTION ***/

void backwards_tilt()
{

while(motor_speed[0] != -100 && motor_speed[3] != -100)
{

costate
{

slower_forwards(motor_speed, motor_speed_increment);
waitfor (DelayMs(200));

} // end costate
} // end while

} // end function

///

/*** BeginHeader manual_drive */
int manual_drive(char *drive_string);
extern int drive_mode;
/*** EndHeader */
const char cmp_drive[] = "wasdqp";
/* START FUNCTION DESCRIPTION **
manual_drive <drive.lib>

SYNTAX:

KEYWORDS:

DESCRIPTION:

PARAMETER1:
PARAMETER2:

RETURN VALUE:

SEE ALSO:

END DESCRIPTION **/

int manual_drive(char *drive_string)
{

D.2 drive.lib 184

int count_a,count_d,count_s,count_w,x;
//count_a = 0;
//count_d = 0;
//count_s = 0;
//count_w = 0;
x = 0;
send_event = 6;

for(x=0;x<strlen(drive_string);x++)
{

if(drive_string[x] == cmp_drive[0]) // "w" - accelerate robot
{

faster_forwards(motor_speed, motor_speed_increment);
}
else if(drive_string[x] == cmp_drive[1]) // "a" - take a left turn
{

turn_left(motor_speed, angle);
}
else if(drive_string[x] == cmp_drive[2]) // "s" - slow down robot
{

slower_forwards(motor_speed, motor_speed_increment);
}
else if(drive_string[x] == cmp_drive[3]) // "d" - take a right turn
{

turn_right(motor_speed, angle);
}
else if(drive_string[x] == cmp_drive[4]) // "q" - stop robot
{

stop(motor_speed, motor_speed_increment);
}
else if(drive_string[x] == cmp_drive[5]) // "p" - exit manual drive mode
{

drive_mode = 1;
wp_start = 0;

} // end elseif
} // end for

} // end manual_drive

///

/*** BeginHeader wp_follow_full */
int wp_follow_full();
extern char in_stri[128];
extern int tm_hc;
extern int wheel_air;
extern int wp_start;
extern int GPS_inv_limit;
extern int tm_nav;
extern GPSPosition curr_p2;
/*** EndHeader */

GPSPosition curr_p2;
/* START FUNCTION DESCRIPTION **
int wp_follow_full() <drive.lib>

SYNTAX:

D.2 drive.lib 185

KEYWORDS:

DESCRIPTION:

PARAMETER1:
PARAMETER2:

RETURN VALUE:

SEE ALSO:

END DESCRIPTION **/

int wp_follow_full()
{
int count_invalid;

costate
{

waitfor(DelayMs(2000));
getgps(in_stri);
if(wp_start == 0)
{

count_invalid = 0;
while(count_invalid != 60)

{
costate

{
waitfor(DelayMs(1000));

count_invalid++;
getgps(in_stri);

if(gps_get_position(&curr_p2, in_stri) == 0)
{

break;
}

if (gps_get_position(&curr_p2, in_stri) == -1)
{
sprintf(out_string,"GPS parsing error\n\r");
send_event = 5;

} // end if
if (gps_get_position(&curr_p2, in_stri) == -2)
{
sprintf(out_string,"GPS sentence invalid\n\r");
send_event = 5;

} // end else if
if(count_invalid == 60)
{
drive_mode = 5;

return 0;
} // end if

} // end costate
} // end while

D.2 drive.lib 186

} // end if
forward_full();
//read_sensors();

} // end costate
costate
{

waitfor(DelayMs(1000));
// sensor_range();
// sensor_high_centered(tm_hc, wheel_air);

} // end costate
costate
{

waitfor(DelayMs(tm_nav*1000));
navigate(in_stri);

} // end costate
} // end wp_follow_full

//

/*** BeginHeader wp_follow_partial */
void wp_follow_partial();
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
wp_follow_partial() <drive.lib>

SYNTAX:

KEYWORDS:

DESCRIPTION:

PARAMETER1:
PARAMETER2:

RETURN VALUE:

SEE ALSO:

END DESCRIPTION **/

void wp_follow_partial()
{

costate
{

waitfor(DelayMs(2000));
getgps(in_stri);
forward_partial();
read_sensors();

} // end costate
costate
{

waitfor(DelayMs(tm_nav*1000));
navigate(in_stri);

D.2 drive.lib 187

} // end costate
} // end wp_follow_partial

//

/*** BeginHeader high_centered */
int high_centered(char *in_string);
extern int drive_mode;
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
high_centered(char *in_string) <drive.lib>

SYNTAX:

KEYWORDS:

DESCRIPTION: drive mode called while high centered with motor speeds = 0;
has to be tested

PARAMETER1:

RETURN VALUE:

SEE ALSO:

END DESCRIPTION **/

int high_centered(char *in_string)
{
int stk;
while(1)

{

stk = 0;
if(strncmp((in_string), "exit", 4) == 0) // cmd for exiting got_stuck
{

drive_mode = 1;
return 1;

} // end if
while(stk <= 9)
{

costate
{

waitfor(DelayMs(100));
slower_forwards(motor_speed, motor_speed_increment);
stk++;

} // end costate
} // end while
stk = 0;

costate
{

waitfor(DelayMs(12000));

D.2 drive.lib 188

while(stk <= 19)
{

costate
{

waitfor(DelayMs(100));
faster_forwards(motor_speed, motor_speed_increment);
stk++;

} // end costate
} // end while
} // end costate

} // end while
} // end got_stuck

/*** BeginHeader */
#endif
/*** EndHeader */

D.3 gps.lib 189

D.3 gps.lib

/*** BeginHeader */
#ifndef __GPS_LIB
#define __GPS_LIB
/*** EndHeader */

/* START LIBRARY DESCRIPTION ***
23mar2005
gps.lib
ZWorld, 2001
Goetz Dietrich, 2005
- bearing calculation changed to double (arccos transfered to arctan)
- bearing calculation changed to 0 ◦/180 ◦ case

functions for parsing NMEA-0183 location data from a GPS receiver.
Also has functions for computing distances, bearings and to calculate
basing points:

gps_get_position
gps_get_utc
gps_ground_distance
gps_bearing
gps_basing_point
getgps

END DESCRIPTION ***/

/*** BeginHeader */

//This structure holds geographical position as reported by a GPS receiver
//use the gps_get_position function below to set the fields
typedef struct {
int lat_degrees;
int lon_degrees;
float lat_minutes;
float lon_minutes;
char lat_direction;
char lon_direction;

char sog; //speed over ground
float tog; //track over ground

} GPSPosition;

//in km

#define GPS_EARTH_RADIUS 6356 // in km
#define dbp 0.25 // distance to next basing point in km

/*** EndHeader */

/*** BeginHeader gps_parse_coordinate */
int gps_parse_coordinate(char *coord, int *degrees, float *minutes);
/*** EndHeader */

D.3 gps.lib 190

//helper function for splitting xxxxx.xxxx into degrees and minutes
//returns 0 if succeeded
nodebug int gps_parse_coordinate(char *coord, int *degrees, float *minutes)
{
auto char *decimal_point;
auto char temp;
auto char *dummy;

decimal_point = strchr(coord, ’.’);
if(decimal_point == NULL)
return -1;
temp = *(decimal_point - 2);
*(decimal_point - 2) = 0; //temporary terminator
*degrees = atoi(coord);
*(decimal_point - 2) = temp; //reinstate character
*minutes = strtod(decimal_point - 2, &dummy);
return 0;
}

/*** BeginHeader gps_get_position */
int gps_get_position(GPSPosition *newpos, char *sentence);
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
gps_get_position <gps.lib>

SYNTAX: int gps_get_position(GPSPositon *newpos, char *sentence);

KEYWORDS: gps

DESCRIPTION: Parses a sentence to extract position data.
This function is able to parse any of the following
GPS sentence formats: GGA, GLL, RMC

PARAMETER1: newpos - a GPSPosition structure to fill
PARAMETER2: sentence - a string containing a line of GPS data
in NMEA-0183 format

RETURN VALUE: 0 - success
-1 - parsing error
-2 - sentence marked invalid

SEE ALSO:

END DESCRIPTION **/

//can parse GGA, GLL, or RMC sentence
int gps_get_position(GPSPosition *newpos, char *sentence)
{
auto int i, tg;

auto char togg[5];
auto char *dummy;

if(strlen(sentence) < 4)
return -1;
if(strncmp(sentence, "$GPGGA", 6) == 0)

D.3 gps.lib 191

{
//parse GGA sentence
for(i = 0;i < 11;i++)
{
sentence = strchr(sentence, ’,’);
if(sentence == NULL)
return -1;
sentence++; //first character in field
//pull out data
if(i == 1) //latitude
{
if(gps_parse_coordinate(sentence,

&newpos->lat_degrees,
&newpos->lat_minutes)

)
{
return -1; //get_coordinate failed
}
}
if(i == 2) //lat direction
{
newpos->lat_direction = *sentence;
}
if(i == 3) // longitude
{
if(gps_parse_coordinate(sentence,

&newpos->lon_degrees,
&newpos->lon_minutes)

)
{
return -1; //get_coordinate failed
}
}
if(i == 4) //lon direction
{
newpos->lon_direction = *sentence;
}
if(i == 5) //link quality
{
if(*sentence == ’0’)
return -2;
}
}
}
else if(strncmp(sentence, "$GPGLL", 6) == 0)
{
//parse GLL sentence
for(i = 0;i < 6;i++)
{
sentence = strchr(sentence, ’,’);
if(sentence == NULL)
{
//handle short GLL sentences from Garmin receivers
if(i > 3) break;
return -1;
}

D.3 gps.lib 192

sentence++; //first character in field
//pull out data
if(i == 0) //latitude
{
if(gps_parse_coordinate(sentence,

&newpos->lat_degrees,
&newpos->lat_minutes)

)
{
return -1; //get_coordinate failed
}
}
if(i == 1) //lat direction
{
newpos->lat_direction = *sentence;
}
if(i == 2) // longitude
{
if(gps_parse_coordinate(sentence,

&newpos->lon_degrees,
&newpos->lon_minutes)

)
{
return -1; //get_coordinate failed
}
}
if(i == 3) //lon direction
{
newpos->lon_direction = *sentence;
}
if(i == 5) //link quality
{
if(*sentence != ’A’)
return -2;
}
}
}
else if(strncmp(sentence, "$GPRMC", 6) == 0)
{
//parse RMC sentence
for(i = 0;i < 11;i++)
{
sentence = strchr(sentence, ’,’);
if(sentence == NULL)
return -1;
sentence++; //first character in field
//pull out data
if(i == 1) //link quality
{
if(*sentence != ’A’)
return -2;
}
if(i == 2) //latitude
{
if(gps_parse_coordinate(sentence,

&newpos->lat_degrees,

D.3 gps.lib 193

&newpos->lat_minutes)
)

{
return -1; //get_coordinate failed
}
}
if(i == 3) //lat direction
{

if(*sentence == ’N’ || *sentence == ’S’)
{

newpos->lat_direction = *sentence;
} // end if
else
return -2;

}
if(i == 4) // longitude
{
if(gps_parse_coordinate(sentence,

&newpos->lon_degrees,
&newpos->lon_minutes)

)
{
return -1; //get_coordinate failed
}
}
if(i == 5) //lon direction
{

if(*sentence == ’W’ || *sentence == ’E’)
{

newpos->lon_direction = *sentence;
} // end if
else
return -2;

}
if(i == 6) //speed over ground, knots

{
newpos->sog = *sentence;
}

if(i == 7) //track over ground, degrees true
{

for(tg=1;tg<6;tg++)
togg[tg-1] = *(sentence + tg);

newpos->tog = strtod(togg, &dummy);
}

}
}
else
{
return -1; //unknown sentence type
}
return 0;
}

/*** BeginHeader gps_get_utc */
int gps_get_utc(struct tm *newtime, char *sentence);
/*** EndHeader */

D.3 gps.lib 194

/* START FUNCTION DESCRIPTION **
gps_get_utc <gps.lib>

SYNTAX: int gps_get_utc(struct tm *newtime, char *sentence);

KEYWORDS: gps

DESCRIPTION: Parses an RMC sentence to extract time data

PARAMETER1: newtime - tm structure to fill with new UTC time
PARAMETER2: sentence - a string containing a line of GPS data
in NMEA-0183 format(RMC sentence)

RETURN VALUE: 0 - success
-1 - parsing error
-2 - sentence marked invalid

SEE ALSO:

END DESCRIPTION **/

nodebug int gps_get_utc(struct tm *newtime, char *sentence)
{
int i;
char temp_str[3];
unsigned long epoch_sec;
temp_str[2] = 0; //2 character string
if(strncmp(sentence, "$GPRMC", 6) == 0)
{
//parse RMC sentence
for(i = 0;i < 11;i++)
{
sentence = strchr(sentence, ’,’);
if(sentence == NULL)
return -1;
sentence++; //first character in field
//pull out data
if(i == 0)
{
strncpy(temp_str, sentence, 2);
newtime->tm_hour = atoi(temp_str);
strncpy(temp_str, sentence+2, 2);
newtime->tm_min = atoi(temp_str);
strncpy(temp_str, sentence+4, 2);
newtime->tm_sec = atoi(temp_str);
}
if(i == 1) //link quality
{
if(*sentence != ’A’)
return -2;
}
if(i == 8) //lon direction
{
strncpy(temp_str, sentence, 2);
newtime->tm_mday = atoi(temp_str);

D.3 gps.lib 195

strncpy(temp_str, sentence+2, 2);
newtime->tm_mon = atoi(temp_str);
strncpy(temp_str, sentence+4, 2);
newtime->tm_year = 100 + atoi(temp_str);
}
}
//convert back and forth to get weekday
epoch_sec = mktime(newtime);
mktm(newtime, epoch_sec);
return 0;
}
else
{
return -1; //unknown sentence type
}
}

/*** BeginHeader gps_ground_distance */
float gps_ground_distance(GPSPosition *a, GPSPosition *b);
#use DoublePrecision.lib
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
gps_ground_distance <gps.lib>

SYNTAX: float gps_ground_distance(GPSPosition *a, GPSPosition *b);

KEYWORDS: gps

DESCRIPTION: Calculates ground distance(in km) between to
geographical points. (Uses spherical earth model)

PARAMETER1: a - first point
PARAMETER2: b - second point

RETURN VALUE: distance in kilometers

SEE ALSO:

END DESCRIPTION **/

float gps_ground_distance(GPSPosition *a, GPSPosition *b)
{
float angle, pi;
float lat_a, lon_a, lat_b, lon_b;

_double dummy00, diss;
_double lat_x, lat_y, lon_x, lon_y;
pi = 3.141592654;

lat_a = a->lat_degrees + a->lat_minutes/60;
if(a->lat_direction == ’S’)
lat_a = -lat_a;
lat_a = lat_a * PI / 180;
lon_a = a->lon_degrees + a->lon_minutes/60;

if(a->lon_direction == ’E’)
lon_a = -lon_a;

D.3 gps.lib 196

lon_a = lon_a * PI / 180;

lat_b = b->lat_degrees + b->lat_minutes/60;
if(b->lat_direction == ’S’)
lat_b = -lat_b;
lat_b = lat_b * PI / 180;
lon_b = b->lon_degrees + b->lon_minutes/60;

if(b->lon_direction == ’E’)
lon_b = -lon_b;
lon_b = lon_b * PI / 180;

lat_x = dpFloat2Double(lat_a);
lat_y = dpFloat2Double(lat_b);
lon_x = dpFloat2Double(lon_a);
lon_y = dpFloat2Double(lon_b);
dummy00 = dpAdd(dpMul(dpSine(lat_x),dpSine(lat_y)),dpMul(dpMul(dpCosine(lat_x),dpCosine(lat_y)),dpCosine(dpSub(lon_x,lon_y))));
//dummy00 = dpSin(lat_a) * dpSin(lat_b) + dpCos(lat_a) * dpCos(lat_b) *dpCos(lon_a-lon_b)
diss = dpAdd(dpArctan(dpDiv(dpNeg(dummy00),

dpSqrt(dpAdd(dpMul(dpNeg(dummy00),dummy00),dpMakeNum(0x3ff00000,0x0)/*1*/)))),dpMul(dpMakeNum(0x40000000,0x0)/*2*/,dpArctan(dpMakeNum(0x3ff00000,0x0)/*1*/)));
//angle = dpAtan(-dummy00/dpSqrt(-dummy00*dummy00+1))+2*dpAtan(1)
diss = dpMul(diss,dpMakeNum(0x40b8d200,0x0)/*6354;*/);
// angle = angle * 6354;
angle = dpDouble2Float(diss);

}

/*** BeginHeader gps_bearing */
float gps_bearing(GPSPosition *c, GPSPosition *d, float dist);
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
gps_bearing <gps.lib>

SYNTAX: float gps_bearing(GPSPosition *a, GPSPosition *b, dist);

KEYWORDS: gps

DESCRIPTION: Calculates bearing(in degree) from one geographical point a
to a geographical point b. (Uses spherical earth model)

PARAMETER1: a - first point
PARAMETER2: b - second point
PARAMETER3: dist - ground distance between the two points a b

RETURN VALUE: bearing in degrees

SEE ALSO:

END DESCRIPTION **/

float gps_bearing(GPSPosition *c, GPSPosition *d, float dist)
{
float bearing, pi, lon_dif, lon_diflim;
float lat_c, lon_c, lat_d, lon_d;

D.3 gps.lib 197

_double dummy00, dista, dummy01;
_double lat_x, lat_y, lon_x, lon_y;
pi = 3.141592654;

lat_c = c->lat_degrees + c->lat_minutes/60;
if(c->lat_direction == ’S’)
lat_c = -lat_c;
lat_c = lat_c * PI / 180;
lon_c = c->lon_degrees + c->lon_minutes/60;

if(c->lon_direction == ’E’)
lon_c = -lon_c;
lon_c = lon_c * PI / 180;

lat_d = d->lat_degrees + d->lat_minutes/60;
if(d->lat_direction == ’S’)
lat_d = -lat_d;
lat_d = lat_d * PI / 180;
lon_d = d->lon_degrees + d->lon_minutes/60;

if(d->lon_direction == ’E’)
lon_d = -lon_d;
lon_d = lon_d * PI / 180;

if (cos(lat_c) < 0.0001) // Small number
if (lat_c > 0)

bearing = 180; // Starting from N pole
else bearing = 360; // Starting from S pole

dist = dist / GPS_EARTH_RADIUS; // Convert distance to radian
lon_dif = lon_c - lon_d;
lon_diflim = 0.0000006399;
if(lon_dif < lon_diflim && lon_dif > -lon_diflim) //abs

if(lat_c > lat_d)
{

bearing = PI;
} // end if
else
{

bearing = 0;
} // end else

else
{

if (sin(lon_d - lon_c) < 0) // Calculation of bearing
{

lat_x = dpFloat2Double(lat_c);
lat_y = dpFloat2Double(lat_d);
lon_x = dpFloat2Double(lon_c);
lon_y = dpFloat2Double(lon_d);

dista = dpFloat2Double(dist);
dummy00 = dpDiv(dpSub(dpSine(lat_y),dpMul(dpSine(lat_x),dpCosine(dista))),dpMul(dpSine(dista),dpCosine(lat_x)));
//bearing = acos(dummy01);
dummy01 = dpAdd(dpArctan(dpDiv(dpNeg(dummy00),

dpSqrt(dpAdd(dpMul(dpNeg(dummy00),dummy00),dpMakeNum(0x3ff00000,0x0)/*1*/)))),dpMul(dpMakeNum(0x40000000,0x0)/*2*/,dpArctan(dpMakeNum(0x3ff00000,0x0)/*1*/)));
//dummy01 = dpAtan(-dummy00/dpSqrt(-dummy00*dummy00+1))+2*dpAtan(1)

bearing = dpDouble2Float(dummy01);
} // end if

else
{

D.3 gps.lib 198

lat_x = dpFloat2Double(lat_c);
lat_y = dpFloat2Double(lat_d);
lon_x = dpFloat2Double(lon_c);
lon_y = dpFloat2Double(lon_d);

dista = dpFloat2Double(dist);
dummy00 = dpDiv(dpSub(dpSine(lat_y),dpMul(dpSine(lat_x),dpCosine(dista))),dpMul(dpSine(dista),dpCosine(lat_x)));
//bearing = 2*PI-acos((sin(lat_d)-sin(lat_c)*cos(dist))/(sin(dist)*cos(lat_c)));
dummy01 = dpAdd(dpArctan(dpDiv(dpNeg(dummy00),

dpSqrt(dpAdd(dpMul(dpNeg(dummy00),dummy00),dpMakeNum(0x3ff00000,0x0)/*1*/)))),dpMul(dpMakeNum(0x40000000,0x0)/*2*/,dpArctan(dpMakeNum(0x3ff00000,0x0)/*1*/)));
//dummy01 = dpAtan(-dummy00/dpSqrt(-dummy00*dummy00+1))+2*dpAtan(1)

bearing = dpDouble2Float(dummy01);
bearing = 2*PI - bearing;

} // end else
} // end else
return bearing * (180 / PI);

}

/*** BeginHeader gps_basing_point */
gps_basing_point(GPSPosition *c, GPSPosition *bp, float tc1);
extern float dist_bp;
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
gps_bearing <gps.lib>

SYNTAX: float gps_bearing(GPSPosition *c, GPSPosition *bp, tc1);

KEYWORDS: gps

DESCRIPTION: Calculates lat and lon of a basing_point bp at a certain distance
dbp from starting point c with the initial bearing tc1

PARAMETER1: c - starting point
PARAMETER2: bp - basing_point
PARAMETER3: tc1 in true degrees
RETURN VALUE:

SEE ALSO:

END DESCRIPTION **/

gps_basing_point(GPSPosition *c, GPSPosition *bp, float tc1)
{
float lat_c, lon_c, lat_d, lon_d, dist, dummy2;

int dummy;

lat_c = c->lat_degrees + c->lat_minutes/60;
if(c->lat_direction == ’S’)
lat_c = -lat_c;
lat_c = lat_c * PI / 180;
lon_c = c->lon_degrees + c->lon_minutes/60;

if(c->lon_direction == ’E’)
lon_c = -lon_c;
lon_c = lon_c * PI / 180;

D.3 gps.lib 199

tc1 = tc1 * (PI / 180);
dist = dist_bp / GPS_EARTH_RADIUS;

lat_d = asin(sin(lat_c) * cos(dist) + cos(lat_c) * sin(dist) * cos(tc1));
if (cos(lat_d) == 0)

lon_d = lon_c; // endpoint a pole
else

lon_d = (lon_c - asin(sin(tc1) * sin(dist) / cos(lat_d)) + PI);
dummy = (int) ((lon_d) / (2 * PI));
dummy2 = (float) dummy * (2 * PI);
lon_d = lon_d - dummy2;
lon_d = lon_d - PI;

lat_d = lat_d * 180 / PI;
if(lat_d < 0)

bp->lat_direction = ’S’;
else bp->lat_direction = ’N’;
dummy = (int) lat_d;
bp->lat_degrees = dummy;
lat_d = (lat_d - (float)dummy) * 60;
bp->lat_minutes = lat_d;

lon_d = lon_d * 180 / PI;
if(lon_d < 0)

bp->lon_direction = ’E’;
else bp->lon_direction = ’W’;

dummy = (int) lon_d;
bp->lon_degrees = dummy;
lon_d = (lon_d - (float)dummy) * 60;
bp->lon_minutes = lon_d;

}

/*** BeginHeader getgps */
char *getgps(char *buffer_gps);
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
getgps(*in_str) <gps.lib>

SYNTAX: char getgps(*in_str);

KEYWORDS: gps

DESCRIPTION: gets gps data string from serC

PARAMETER1: string to put

RETURN VALUE: string from modem

SEE ALSO:

D.3 gps.lib 200

END DESCRIPTION **/

char *getgps(char *buffer_gps)
{

auto int i,ch,m;
serCwrFlush();
serCrdFlush();

memset(buffer_gps, 0x00, sizeof(buffer_gps));

i = 0;
m = 0;

WrPortI (PBDDR, &PBDDRShadow, 0xFF); // PB = all output

SPIinit();

while((ch = serCgetc()) != ’\n’)
{ // start while

// Copy only valid RCV’d characters to the buffer
if(ch != -1)
{

buffer_gps[i++] = ch;
} // endif
} //end while

buffer_gps[i++] = ch; //copy ’\r’ to the data buffer
buffer_gps[i] = ’\0’; //terminate the ascii string

return buffer_gps;
} // end getstring

/*** BeginHeader */
#endif
/*** EndHeader */

D.4 navigate.lib 201

D.4 navigate.lib

/*** BeginHeader */
#ifndef __NAVIGATE_LIB
#define __NAVIGATE_LIB
#use gps.lib
#use drive.lib
/*** EndHeader */

/* START LIBRARY DESCRIPTION ***
21mar2005
navigate.lib
Goetz Dietrich, 2005
-changed routine for having invalid string
- stops after (wp_count+1)th waypoint and manual drive mode
- sends back cp[2]
- changed startup !!!

navigate
turn_full
turn_partial

END DESCRIPTION ***/

/*** BeginHeader navigate */

int navigate(char *in_strie);
extern GPSPosition start_p;
extern GPSPosition curr_p1;
extern GPSPosition curr_p2;
extern GPSPosition active_wp;
extern GPSPosition last_wp;
extern GPSPosition basing_p;
extern GPSPosition wp_list[100];
extern float initial_dist;
extern float dist_to_wp;
extern float dist_to_basep;
extern float curr_dist;
extern float initial_bearing;
extern float bearing_to_wp;
extern float bearing_to_bp;
extern float curr_bearing;
extern float off_bearing;
extern float off_track;
extern float alpha; // used for the off_track calculation
extern int wp_active;
extern int motor_speed[4];
extern char key_input;
extern char out_string[256];
extern char in_stri;

D.4 navigate.lib 202

extern int send_event;
extern int wp_start;
extern int wp_count;
extern int dist_bpdiv;
extern int GPS_inv_limit;
//extern File logfile;

/*** EndHeader */

GPSPosition start_p;
GPSPosition curr_p1;
//GPSPosition curr_p2;
GPSPosition active_wp;
GPSPosition last_wp;
GPSPosition basing_p;
float initial_dist;
float dist_to_wp;
float dist_to_basep;
float curr_dist;
float initial_bearing;
float bearing_to_wp;
float bearing_to_bp;
float curr_bearing;
float off_bearing;
float off_track;
float alpha; // used for the off_track calculation
float dist_bp;
int dist_bpdiv;

/* START FUNCTION DESCRIPTION **
navigate() <navigate.lib>

SYNTAX: void navigate();

DESCRIPTION: basic navigation needs for CRobot to head to the next waypoint

PARAMETER1: active_wp is position of waypoint in array "waypoints"

RETURN VALUE: 0 - GPS parsing error
1 - sentence marked invalid

2 - correct function
3 - reached last waypoint

KEY WORDS:

END DESCRIPTION ***/

int navigate(char *in_strie)
{

int count_invalid, turn_lim;
float wp_range;
float bp_range;
count_invalid = 0;

D.4 navigate.lib 203

wp_range = 0.030;
bp_range = 0.045;
turn_lim = 90;

while(count_invalid != GPS_inv_limit)
{
costate

{
waitfor(DelayMs(1000));

count_invalid++;
getgps(in_strie);

if(gps_get_position(&curr_p1, in_strie) == 0)
{

break;
}

if (gps_get_position(&curr_p1, in_strie) == -1)
{

sprintf(out_string,"GPS parsing error\n\r");
send_event = 5;

} // end if
if (gps_get_position(&curr_p1, in_strie) == -2)
{
sprintf(out_string,"GPS sentence invalid\n\r");
send_event = 5;

} // end else if
if(count_invalid == GPS_inv_limit)
{
drive_mode = 5;

return 0;
} // end if

} // end costate
} // end while

if (gps_get_position(&curr_p1, in_strie) == 0);
{

active_wp = wp_list[wp_active];
if(wp_start == 0) // only once! at startup
{

//curr_p2 = curr_p1;
initial_dist = gps_ground_distance(&curr_p1, &active_wp);
initial_bearing = gps_bearing(&curr_p1, &active_wp, initial_dist);
dist_bpdiv = initial_dist/dis_bp;
dist_bp = initial_dist/dist_bpdiv;
gps_basing_point(&curr_p1, &basing_p, initial_bearing);
wp_start++;

} // end if
dist_to_wp = gps_ground_distance(&curr_p1, &active_wp);
bearing_to_wp = gps_bearing(&curr_p1, & active_wp, dist_to_wp);
dist_to_basep = gps_ground_distance(&curr_p1, &basing_p);
bearing_to_bp = gps_bearing(&curr_p1, &basing_p, dist_to_basep);
curr_dist = gps_ground_distance(&curr_p2, &curr_p1);
curr_bearing = gps_bearing(&curr_p2, &curr_p1, curr_dist);

sprintf(out_string,"aw:%d%f,%c,%d%f,%c:bp:%d%f,%c,%d%f,
%c:cp1:%d%f,%c,%d%f,%c:cp2:%d%f,%c,%d%f,%c:dw:%f:bw:%f
:dbp:%f:bbp:%f:cd:%f:cb:%f\n\r",

D.4 navigate.lib 204

active_wp.lat_degrees, active_wp.lat_minutes,
active_wp.lat_direction, active_wp.lon_degrees,

active_wp.lon_minutes, active_wp.lon_direction,
basing_p.lat_degrees, basing_p.lat_minutes,

basing_p.lat_direction, basing_p.lon_degrees,
basing_p.lon_minutes, basing_p.lon_direction,
curr_p1.lat_degrees, curr_p1.lat_minutes,
curr_p1.lat_direction, curr_p1.lon_degrees,
curr_p1.lon_minutes, curr_p1.lon_direction,
curr_p2.lat_degrees, curr_p2.lat_minutes,
curr_p2.lat_direction, curr_p2.lon_degrees,
curr_p2.lon_minutes, curr_p2.lon_direction,
dist_to_wp, bearing_to_wp,
dist_to_basep, bearing_to_bp,
curr_dist, curr_bearing);

// fopen_wr(&logfile,LOG_FILE_NAME);
// fwrite(&logfile,out_string,strlen(out_string));
// fclose(&logfile);
// printf("%s\n",out_string);

send_event = 5;

if (dist_to_wp <= wp_range)
{

wp_active ++;
if(wp_active == wp_count+1) // stops crobot last waypoint
{

//stop(motor_speed, motor_speed_increment);
drive_mode = 5;
return 2;

} // end if
last_wp = wp_list[wp_active-1]; // store last waypoint

active_wp = wp_list[wp_active]; // update waypoint

initial_dist = gps_ground_distance(&last_wp, &active_wp);
initial_bearing = gps_bearing(&last_wp, &active_wp, initial_dist);
dist_to_wp = gps_ground_distance(&curr_p1, &active_wp);
bearing_to_wp = gps_bearing(&curr_p1, & active_wp, dist_to_wp);
dist_bpdiv = initial_dist/dis_bp;
dist_bp = initial_dist/dist_bpdiv;
gps_basing_point(&last_wp, &basing_p, initial_bearing);

dist_to_basep = gps_ground_distance(&curr_p1, &basing_p);
bearing_to_bp = gps_bearing(&curr_p1, &basing_p, dist_to_basep);

} // end if
else
{

if (dist_to_basep <= bp_range)
{

if(dist_to_wp > 2*dist_to_basep)
{

gps_basing_point(&basing_p, &basing_p, initial_bearing);
dist_to_basep = gps_ground_distance(&curr_p1, &basing_p);
bearing_to_bp = gps_bearing(&curr_p1, &basing_p, dist_to_basep);

} // end if
} // end if

D.4 navigate.lib 205

} // end else

// calculation of the track offset
if (bearing_to_bp > initial_bearing)
{

alpha = bearing_to_bp - initial_bearing;
} // end if
else
{

alpha = initial_bearing - bearing_to_bp;
} // end else

alpha = alpha * PI / 180;
off_track = sin(alpha) * dist_to_basep;

if (dist_to_wp <= 1.5*dist_to_basep)
{

off_bearing = bearing_to_wp - curr_bearing;
} // end if
else
{

off_bearing = bearing_to_bp - curr_bearing;
} // end else
if(off_bearing > 180)

{
off_bearing = off_bearing -360;
} // end if
if(off_bearing < -180)
{
off_bearing = off_bearing + 360;
} // end if
if(off_bearing < -turn_lim)
{
off_bearing = -turn_lim;
} // end if
if(off_bearing > turn_lim)
{
off_bearing = turn_lim;
} // end if

//printf("gps string is: %s\n", in_strie); // only for use with navigate
curr_p2 = curr_p1; // store two points with x sec difference for navigation
printf("off bearing is %f\n", off_bearing);
if (off_bearing >= 4 || off_bearing <= -4|| off_track >= 20)
{

if(drive_mode == 1)
{
turn_full(off_bearing); // function that makes z degree turn??!
} // end if
if (drive_mode == 2)
{

turn_partial(off_bearing); // function to make z degree turn at 60% speed
} // end if
getgps(in_strie);
while(count_invalid != GPS_inv_limit)

{
costate

{

D.4 navigate.lib 206

waitfor(DelayMs(1000));
count_invalid++;
getgps(in_strie);

if(gps_get_position(&curr_p2, in_strie) == 0)
{

break;
}
if (gps_get_position(&curr_p2, in_strie) == -1)

{
sprintf(out_string,"GPS parsing error\n\r");
send_event = 5;

} // end if
if (gps_get_position(&curr_p2, in_strie) == -2)
{
sprintf(out_string,"GPS sentence invalid\n\r");
send_event = 5;

} // end else if
if(count_invalid == GPS_inv_limit)
{

drive_mode = 5;
return 0;

} // end if
} // end costate

} // end while
} // end if

} // end else if
return 2;

} // end function

/*** BeginHeader turn_full */
void turn_full(float off_bearing);
#use analogin.lib
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
turn_full(off_bearing) <navigate.lib>

SYNTAX: void turn_full(float off_bearing);

DESCRIPTION: makes a turn of (off_bearing) degrees to right(off_bearing > 0)
or left(off_bearing < 0)

PARAMETER1: calculated off_bearing from initial course to waypoint

RETURN VALUE: None

KEY WORDS:

END DESCRIPTION ***/

void turn_full(float off_bearing)

D.4 navigate.lib 207

{
auto int i;

long turning_tm;
i = 1;

if(off_bearing <= 0)
{

turning_tm = (int)off_bearing*(-300);
motor_speed[2] = 90; // motor speeds are set to 100 !!
motor_speed[1] = 90;
UpdateMotorOutput();
while(i == 1)
{

costate
{

waitfor (DelayMs(1000));
read_sensors(); // interrupts??? !!!

} // end costate
costate
{

waitfor (DelayMs(turning_tm));
motor_speed[2] = 100;

motor_speed[1] = 100;
UpdateMotorOutput();

i = 0;
} // end costate

} // end while
} // end if

else if(off_bearing > 0)
{

turning_tm = (int)off_bearing*300;
motor_speed[0] = 88; // motor speeds are set to 100 !!

motor_speed[3] = 88;
UpdateMotorOutput();
while(i == 1)
{

costate
{

waitfor (DelayMs(1000));
read_sensors();

} // end costate
costate
{

waitfor (DelayMs(turning_tm));
motor_speed[0] = 100;

motor_speed[3] = 100;
UpdateMotorOutput();

i = 0;
} // end costate

} // end while

} // end else if
} // end function

///
/*** BeginHeader turn_partial */

D.4 navigate.lib 208

void turn_partial(float off_bearing);
#use analogin.lib
/*** EndHeader */

/* START FUNCTION DESCRIPTION **
turn_partial(off_bearing) <navigate.lib>

SYNTAX: void turn_partial(float off_bearing);

DESCRIPTION: makes a turn of (off_bearing) degrees to right(off_bearing > 0)
or left(off_bearing < 0)

PARAMETER1: calculated off_bearing from initial course to waypoint

RETURN VALUE: None

KEY WORDS:

END DESCRIPTION ***/

void turn_partial(float off_bearing)
{
auto int i;

long turning_tm;
i = 1;

if(off_bearing <= 0)
{

turning_tm = (int)off_bearing*(-300);
motor_speed[0] = 45; // motor speeds are set to 100 !!
motor_speed[1] = 45;
UpdateMotorOutput();
while(i == 1)
{

costate
{

waitfor (DelayMs(1000));
read_sensors();

} // end costate
costate
{

waitfor (DelayMs(turning_tm));
motor_speed[0] = 60;

motor_speed[1] = 60;
UpdateMotorOutput();

i = 0;
} // end costate

} // end while
} // end if

else if(off_bearing > 0)
{

turning_tm = (int)off_bearing*300;
motor_speed[2] = 44; // motor speeds are set to 100 !!

motor_speed[3] = 44;

D.4 navigate.lib 209

UpdateMotorOutput();
while(i == 1)
{

costate
{

waitfor (DelayMs(1000));
read_sensors();

} // end costate
costate
{

waitfor (DelayMs(turning_tm));
motor_speed[2] = 60;

motor_speed[3] = 60;
UpdateMotorOutput();

i = 0;
} // end costate

} // end while

} // end else if
} // end function

/*** BeginHeader */
#endif
/*** EndHeader */

D.5 radiocomm_e.lib 210

D.5 radiocomm_e.lib

/* Toni Zettl March 15th 2005 */

/*** BeginHeader */
#use GPS.LIB
/*** EndHeader */

//
/*** BeginHeader str2wayp */
int str2wayp(char *in_str, GPSPosition *wayp);
extern int wp_count;
extern GPSPosition wp_list[100];
/*** EndHeader */
/* START FUNCTION DESCRIPTION ******************************
termStr <radiocomm_e.lib>

SYNTAX: int str2wayp(char *in_str);

DESCRIPTION: This function converts a string to datastructure GPSPosition and
and place the waypoint(s) within the string in the global

variable wp_list.

PARAMETER1: Pointer to string up to 255 characters long

RETURN VALUE: integer with number of waypoints successful written to wp_list.
0 if an error occured.

KEY WORDS: string, waypoint, GPSPosition, convert

END DESCRIPTION ***/

int str2wayp(char *in_str, GPSPosition *wayp)
{

int wp_number,i,written_wp;
//GPSPosition wp_list[100];
char buff[256];

//printf("%s\n",in_str);
in_str = strchr(in_str,’,’)+1; // pointer locatet to first char after first ","

memcpy(buff,in_str,1); // get number of waypoints
buff[1] = ’\0’;
wp_number = atoi(buff);
for(i=0;i<wp_number;i++)
{

in_str = strchr(in_str,’,’)+1; // pointer to first char of waypoint
//printf("%s\n",in_str);

memcpy(buff,in_str,12); // copy lat_ddmm.ssss to buff
buff[12] = ’\0’; // terminated buff with NULL
if(gps_parse_coordinate(buff,&wayp->lat_degrees,&wayp->lat_minutes) == -1)

{
return i;

D.5 radiocomm_e.lib 211

}
memcpy(buff,in_str+10,10); // copy lon_dddmm.ssss to buff
buff[10] = ’\0’; // terminate buff with NULL
if(gps_parse_coordinate(buff,&wayp->lon_degrees,&wayp->lon_minutes) == -1)

{
return i;

}
in_str = in_str+9; // pointer to lat_direction

if((strncmp(in_str,"N",1) == 0) || (strncmp(in_str,"S",1) == 0))
{

wayp->lat_direction = *in_str; // write lat_direction to wayp
}
else
{

return i;
}

in_str = in_str+11; // pointer to lon_direction
if((strncmp(in_str,"W",1) == 0) || (strncmp(in_str,"E",1) == 0))
{

wayp->lon_direction = *in_str; // write lon_direction to wayp
}
else
{

return i;
}
wp_list[wp_count] = *wayp; // write wayp to wp_list

wp_count++; // increment wp_count
} // end for
return i;

} // end str2wayp

//
/*** BeginHeader termStr */
char *termStr(char *buffer);
extern char buffer[256];
/*** EndHeader */
int m;
/* START FUNCTION DESCRIPTION ******************************
termStr <radiocomm_e.lib>

SYNTAX: char *termStr(char *buffer);

DESCRIPTION: The function simply terminates a string pointed to by buffer with
a carriage return ’\r’. Buffer points to the terminated string

afterwards.

PARAMETER1: Pointer to string up to 255 characters long

RETURN VALUE: Pointer to the carriage return terminated string

KEY WORDS: carriage return; terminate

END DESCRIPTION ***/

char *termStr(char *buffer)

D.5 radiocomm_e.lib 212

{
int m;
m = 0;
while(buffer[m] != ’\0’)
{
buffer[m] = buffer[m];
m++;
}
buffer[m++] = ’\r’;
buffer[m] = ’\0’;
return buffer;
} // end termStr

//
/*** BeginHeader clearStr */
char *clearStr(char *str);
/*** EndHeader */
/* START FUNCTION DESCRIPTION ******************************
clearStr <radiocomm_e.lib>

SYNTAX: void *clearStr(char *buffer);

DESCRIPTION: Function deletes leading line feeds (’\n’) and "cmd:"-strings
the string pointed to by buffer.

PARAMETER1: Pointer to string up to 255 characters long

RETURN VALUE: none

KEY WORDS: clear, line feed, string

END DESCRIPTION ***/

char *clearStr(char *str)
{

char dummy[256];
memset(dummy, 0x00, sizeof(dummy));
while(1)
{

if(str[0] == ’\n’)
{

//str++;
memcpy(dummy,str+1,254);

memcpy(str,dummy,sizeof(dummy));
} // end if
else if(strncmp(str,"cmd:",4) == 0)
{

//str += 4;
memcpy(dummy,str+4,250);

memcpy(str,dummy,sizeof(dummy));
}
else
{

return str;

D.5 radiocomm_e.lib 213

}
} // end while

} // end clearStr

//
/*** BeginHeader processModemStr */
int processModemStr(char *chk_string);
extern int status_modem;
extern int wp_rcvd;
extern int send_event;
extern int tm_count;
extern char in_string[256];
/*** EndHeader */
static const char cmp_connected[] = "*** CONNECTED to GOEK";
static const char cmp_modemon[] = "DUPLICATION PROHIBITED";
static const char cmp_disconnected[] = "*** DISCONNECTED";
static const char cmp_setbaud[] = "PRESS (*) TO SET BAUDRATE";
static const char cmp_modemtest2[] = "EH?";
static const char cmp_modemtest1[] = "cmd: $";
/* START FUNCTION DESCRIPTION ******************************
processModemStr <radiocomm_e.lib>

SYNTAX: int processModemStr(char *chk_string);

DESCRIPTION:

PARAMETER1: Pointer to string up to 255 characters long

RETURN VALUE: Integer value 0, 1 or 2 for status of the modem

KEY WORDS:

END DESCRIPTION ***/

int processModemStr(char *chk_string)
{

char in_string[256];
int str_len;
int k;
GPSPosition wayp;

clearStr(chk_string); // deletes leading ’\n’ and "cmd:" from the input string

if(strlen(chk_string) == 0)
{
return 0;
}

// detects if a connection is established
if(strncmp(chk_string,cmp_connected,15) == 0)
{

status_modem = 2;
printf("connected\n");
return 2;

}

D.5 radiocomm_e.lib 214

// detect if the modem is on
else if(strncmp(chk_string,cmp_modemon,10) == 0
|| strncmp(chk_string,cmp_modemtest1,5) == 0
|| strncmp(chk_string,cmp_modemtest2,3) == 0)
{
status_modem = 1;

tm_count = 0;
printf("modem on\n");

return 1;
} // end else if
// detects a disconnection
else if(strncmp(chk_string,cmp_disconnected,15) == 0)
{

//printf("\n***** DiScOnNeCtEd *****\n");
while(motor_speed[0] != 0 || motor_speed[3] != 0
|| motor_speed[1] != 0 || motor_speed[2] != 0)

{
stop(motor_speed, motor_speed_increment);
} // end while

drive_mode = 5;
status_modem = 1;
return 1;

}
else //if(status_modem == 2) // no modem_cmd ...
{

if(strncmp(chk_string, "$CRWPT", 6) == 0) // case2: waypoint(s) recieved
{

str_len = strlen(chk_string);
memcpy(in_string,chk_string,str_len+1);
wp_rcvd = str2wayp(in_string,&wayp);
if(wp_rcvd != -1) // no error while storing WPs
{

send_event = 1; // send number of waypoints succesfully received
}
return 4;

} // end if
else if(strncmp(chk_string, "$CRCMD", 6) == 0) // case3: command recieved
{

if(strncmp((chk_string+6), "MANDM", 5) == 0) // cmd for entering
{ // manual drive mode

drive_mode = 5; // switch to maunal drive mode
stop(motor_speed, motor_speed_increment);

memset(in_string, 0x00, sizeof(in_string));
}
else if(strncmp((chk_string+6), "WPFFL", 5) == 0) // cmd for entering
{ // waypoint following full speed

drive_mode = 1; // switch to wp_follow_full
stop(motor_speed, motor_speed_increment);

memset(in_string, 0x00, sizeof(in_string));
}
else if(strncmp((chk_string+6), "WPFPT", 5) == 0) // cmd for entering
{ // waypoint following partial speed

drive_mode = 2; // switch to wp_follow_partial
stop(motor_speed, motor_speed_increment);

memset(in_string, 0x00, sizeof(in_string));
}

D.5 radiocomm_e.lib 215

else if(strncmp((chk_string+6), "GOTST", 5) == 0) // cmd for entering
{ // got stuck mode

drive_mode = 3; // switch to got_stuck
stop(motor_speed, motor_speed_increment);

memset(in_string, 0x00, sizeof(in_string));
}

return 5;
}
else if(strncmp(chk_string, "$CRSRQ", 6) == 0) // case4: status request
{

send_event = 3; // send back a status report
return 6;

}
else if(strncmp(chk_string, "$CRDRQ", 6) == 0) // case5: data request

{
send_event = 4; // send back last ...mins of data stored
return 7;

} // end elseif
else // case6: undefined/unimportend
{ // string received

return 8;
}

} // end if
}// end processModemStr

BIBLIOGRAPHY 216

Bibliography

[1] A. S. Laura Ray, Alexander Price and D. Denton, “The Design of a Mobile Robot for
Instrument Network Deployment in Antarctica,” paper, ICRA, 2005.

[2] D. S. A. et al., “Nomad,” 2004.

[3] NASA/JPL, “,” 2004.

[4] G. Gravenkoetter and G. Hamann, “Development for a Cool Robot for the Antarctic,”
Diploma Thesis, Thayer School of Engineering, 2004.

[5] A. Price, “CoolRobot-Mechanical Design of a Solar-Powered Antarctic Robot,” Honor‘s
Thesis, Thayer School of Engineering, 2004.

	Title page
	Abstract
	Statement
	Foreword
	Contents
	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	2 Assembly process for Cool Robot
	3 The navigation and monitoring elements
	3.1 GPS Navigation
	3.1.1 The Motorola Oncore M12+ GPS receiver

	3.2 Main program for autonomous navigation
	3.2.1 Calculating the distance between two gps positions
	3.2.2 Calculation of gps bearing and off bearing
	3.2.3 Double precision floating point in dynamic C

	3.3 Analog sensors
	3.3.1 Power and signal supplies and setup for the ADC evaluation board
	3.3.2 12-bit, 16 channel Analog to Digital Converter on serial port B
	3.3.3 Dual axis accelerometer used as a tilt sensor
	3.3.4 Motor current and motor velocity sensors
	3.3.5 Function to process the sensor data
	3.3.6 Sensor interrupts

	4 The overall control unit
	4.1 Navigation and control mode overview
	4.2 12 bit Voltage output DAC with serial interface
	4.3 AMC brushless servo amplifier and EAD brushless dc motors
	4.4 The different drive modes of Cool Robot
	4.4.1 Waypoint following at full speed
	4.4.2 Waypoint following at partial speed
	4.4.3 Manual Operator

	4.5 Perspective on further drive modes
	4.5.1 Charge cycle
	4.5.2 Stationary data aquisition
	4.5.3 High centered

	5 Communication of CoolRobot
	5.1 IRIDIUM Communication
	5.1.1 The A3LA-I IRIDIUM modem
	5.1.2 Prospect on further use

	5.2 Radio Communication
	5.2.1 The Kantronics KPC3plus packet radio modem

	5.3 Controling the CoolRobot via radio link
	5.3.1 Establish and terminate a connection
	5.3.2 Manual drive mode
	5.3.3 Waypoint following
	5.3.4 Other commands and functions

	6 Data storage
	6.1 Storage and retrieval of internal sensor data
	6.2 The Campbell CR5000 and CR1000 dataloggers

	7 Software frame work
	7.1 Definitions, libraries and variable declarations
	7.2 Start up sequence: initializing of variables, file system and serial ports
	7.3 The main loop
	7.3.1 The modem input block
	7.3.2 The main control block
	7.3.3 The modem output block

	7.4 Different versions of the main programm

	8 Results of the moving tests
	8.1 GPS waypoint following position and navigation data
	8.1.1 Autonomous waypoint following at full speed

	8.2 Overall energy consumption on snow
	8.3 Rolling resistance
	8.4 Radio Interface and Communication

	A Functions and library overview
	A.1 Overview of parameters and variables

	B GPS position and waypoint following test data
	C Schematics overview
	D Source codes
	D.1 analogin.lib
	D.2 drive.lib
	D.3 gps.lib
	D.4 navigate.lib
	D.5 radiocomm_e.lib

	Bibliography

