Magnetic nanoparticle imaging

Magnetic nanoparticle imaging is being developed to meet the needs of translational research on the biodistribution of magnetic nanoparticles (MNPs). Emerging nanotechnology platforms promise to deliver new tools to detect, monitor and treat cancer. These nanotechnology platforms offer a future of personalized medicine where a nanocarrier can be targeted to specific cancer cells, carry a drug payload, be remotely activated at a specific location in the body or upon targeted binding to selected cell types, imaged in-real time, and monitored as therapy progresses. Among the many nanocarriers in development, those utilizing MNPs are ideally suited for translational research because of their long history in biomedical research and many practical applications. We have developed an MNP imaging method called nonlinear susceptibility magnitude imaging (nSMI). Our imaging system has the potential for broad use in translational MNP research because of its functional and cost-efficient design.

Faculty contact: Solomon G. Diamond