- Undergraduate
Undergraduate Experience
- Graduate
Graduate Experience
- Research
- Entrepreneurship
- Community
- About
-
All Thayer News
Diagnostic screening: Microwave imaging of the breast may be better and safer
Dec 16, 2014 | ScienceDaily
Although currently available diagnostic screening systems for breast cancer like X-ray computed tomography (CT) and mammography are effective at detecting early signs of tumors, they are far from perfect, subjecting patients to ionizing radiation and sometimes inflicting discomfort on women who are undergoing screening because of the compression of the breast that is required to produce diagnostically useful images.
A better, cheaper, and safer way to look for the telltale signs of breast cancer may be with microwaves, said Neil Epstein, a NSERC CREATE I3T postdoctoral fellow at the University of Calgary in Canada. Epstein and his colleagues — engineering professor Paul Meaney of Dartmouth's Thayer School of Engineering and Keith Paulsen, director of the Dartmouth Advanced Imaging Center and the Robert A. Pritzker Professor of Biomedical Engineering and Professor of Radiology at the Geisel School of Medicine at Dartmouth — describe just such a microwave imaging system in the current issue of the journal Review of Scientific Instruments, from AIP Publishing.
These are internal, spatially mapped microwave tomography system generated electrical property distribution images of a cancer patient's left breast, taken somewhat into her therapy. Shown are permittivity and conductivity image sets (top and bottom image series, respectively) reconstructed at 1100 MHz. Each plane (i.e., p1 - p7) identifies a different location within system where the image was taken, and is relative to the chest wall. You can clearly see the breast outline and the features inside the breast relate to fibroglandular tissue inside the adipose tissue. This breast has undergone treatment and so most of the tumor has disappeared. Credit: N.Epstein/U.Calgary
Link to source:
http://www.sciencedaily.com/releases/2014/12/141216113015.htm
For contacts and other media information visit our Media Resources page.