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Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging tool for studying evoked hemodynamic
changes within the brain. By this technique, changes in the optical absorption of light are recorded over
time and are used to estimate the functionally evoked changes in cerebral oxyhemoglobin and deoxyhe-
moglobin concentrations that result from local cerebral vascular and oxygen metabolic effects during
brain activity. Over the past three decades this technology has continued to grow, and today NIRS studies
have found many niche applications in the fields of psychology, physiology, and cerebral pathology. The
growing popularity of this technique is in part associated with a lower cost and increased portability of
NIRS equipment when compared with other imaging modalities, such as functional magnetic resonance
imaging and positron emission tomography. With this increasing number of applications, new techniques
for the processing, analysis, and interpretation of NIRS data are continually being developed. We review
some of the time-series and functional analysis techniques that are currently used in NIRS studies, we
describe the practical implementation of various signal processing techniques for removing physiological,
instrumental, and motion-artifact noise from optical data, and we discuss the unique aspects of NIRS
analysis in comparison with other brain imaging modalities. These methods are described within the
context of the MATLAB-based graphical user interface program, HomER, which we have developed
and distributed to facilitate the processing of optical functional brain data. © 2009 Optical Society
of America

OCIS codes: 170.2655, 170.3880, 300.0300, 070.0070.

1. Introduction

Over the past three decades, near infrared spectro-
scopy (NIRS) has been developing as a method for
the noninvasive investigation of the changes in cere-
bral hemodynamic levels associated with brain activ-
ity (reviewed in [1–5]). This optically based imag-
ing method offers several additional features that

compliment other existing techniques such as func-
tional magnetic resonance imaging (fMRI). In parti-
cular, NIRS offers a higher temporal resolution and
additional spectroscopic information about both oxy-
hemoglobin and deoxyhemoglobin changes in com-
parison with fMRI. However, with the development
of this technology, there are also several unique ob-
stacles and technology-specific limitations that must
be addressed. While many of the methods that have
been developed for the analysis and interpretation of
similar neuroimaging experiments, such as fMRI,

0003-6935/09/10D280-19$15.00/0
© 2009 Optical Society of America

D280 APPLIED OPTICS / Vol. 48, No. 10 / 1 April 2009



have been borrowed and applied to optical ex-
periments, additional caveats for dealing with the
specific issues of optical technology must also be con-
sidered. In particular, motion artifacts, the presence
of superficial physiological signals, limited depth
sensitivity of optical measurements, and possible
cross talk between oxyhemoglobin and deoxyhemo-
globin concentrations have created unique chal-
lenges for the development of NIRS analysis
methods.
In this paper, we review the current state of time-

series analysis methods used in functional NIRS to
overcome these challenges. We will describe the prac-
tical implementation of some of these signal proces-
sing and analysis techniques by presenting these
methods in the context of HomER, a MATLAB-based
graphical user interface program for processing func-
tional brain data from NIRS that we have developed
and distributed via the Internet [6].

A. What is NIRS?

The NIRS technique [7–9] uses low level lights (typi-
cally between 5 and 10mW) within the wavelength
region of 650–850nm light to measure optical ab-
sorption changes over time. This is done by noninva-
sively placing optodes on the surface of the sample
(the head); the optodes send and receive light, record-
ing the changes in returning light that has traversed
through the sample (i.e., the head). Because of the
low optical absorption in biological tissue at these
wavelengths, often referred to as the “near-infrared
window,” light can penetrate up to several centi-
meters of tissue as shown in Fig. 1. This optical win-
dow allows light to penetrate deep enough to sample
the outer 1:5–2 cm of the head through skin and skull
and reach the outer approximately 5–10mm of brain
tissue [12–14]. Thus, the NIRS technique can be sen-
sitive to hemoglobin changes in the outermost cortex,
allowing optical measurements to be used for ima-
ging brain function. For NIRS brain imaging experi-

ments, a spatially distributed array of laser sources
are placed on the surface of the subject’s head and are
used to transmit light into the brain. Since the tissue
of the adult human head is highly scattering, this
light does not travel straight through the tissue as
it would for γ- or x-ray beams of light. Instead,
near-infrared photons repeatedly change directions
as they scatter throughout the tissue. Only a very
small fraction of this light (approximately one out
of every 109 photons) reaches the surface of the head
at specific detector positions, usually 3–4 cm away
from the entry source position, where it can be re-
corded. Thus, the light entering at a source position
and exiting the head at a detector position samples a
diffuse volume between these positions. Over time,
changes in the amount of detected light exiting the
surface occur due to changes in optical absorption
of the underlying tissue along this path between a
source and detector pair; these changes alter the
probability of a photon’s reaching the detector before
being absorbed. In brain activation studies, these
changes are related to the functionally evoked
changes in oxyhemoglobin and deoxyhemoglobin
concentrations in the brain, which can be estimated
from optical measurements of these absorption
changes at multiple wavelengths (colors) by virtue
of the unique spectroscopic signatures of the two
forms of hemoglobin [15]. Figure 1 shows the depth
of optical penetration into the adult human head and
primary motor cortex region based on simulations of
photon propagation [16] through a segmented anato-
mical model as described in [17].

In 1977, Jöbsis [7] first demonstrated optical mea-
surements of evoked cerebral changes, and, over the
past several decades since this publication, NIRS has
been applied to study a variety of cerebral regions
including the visual [18–20], auditory [21–23], and
somatosensory cortices [24,25]. Other areas of inves-
tigation have included the motor [26–29], prefrontal
or cognitive [30–33], and language systems [34]. In

Fig. 1. Typical setup for a NIRS experiment. (a) Sensitivity of a NIRS measurement determined by the propagation of light emanated
from a source position and recorded by a detector placed several centimeters away. (b) Sample NIRS probe used to measure the primary
motor cortex [10]. (c) Absorption spectrum (extinction coefficients) for oxyhemoglobin and deoxyhemoglobin over the range of wavelengths
typically used for optical imaging [11].
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addition to its use in functional brain experiments,
NIRS is beginning to be applied to study several
clinical problems, in part motivated by the portabil-
ity and bedside applicability of NIRS instruments.
Clinically oriented NIRS applications have ad-
dressed the prevention and treatment of seizures
[35–40], have addressed Alzheimer’s disease [41–
43], and have provided a potential tool to monitor
neonate brain status [44] and stroke rehabilitation
[45–52]. NIRS has also been applied to psychiatric
health concerns such as depression [30,53–57] and
schizophrenia [57–62].
The recent growth of this field has been in part the

result of the increased availability of instruments.
There are currently a number of commercially avail-
able optical systems: from Hamamatsu, the NIRO
500 and the Somentics INVOS 3100 systems; NIRx
Medical technologies, the Dynot system; Hitachi
Medical Corporation, the ETG Optical Topography
System system; ISS Inc., the Imagent system; and
Techen Inc., the NIRS2 and CW5 systems, to cite a
few. This growth may also be due in part to an in-
creased recognition of several advantages of optical
imaging that enhance other existing neuroimaging
modalities, such as fMRI. In particular, NIRS experi-
ments are less costly to perform than conventional
fMRI. Generally, optical instruments are also smal-
ler, more portable, less expensive to purchase, and
require little to no scheduled maintenance costs (un-
like MRI or positron emission tomography scanners).
Additionally, NIRS experimental procedures are con-
ducted in a more experimentally controllable envir-
onment than the noisy and confining scanners used
in MRI and other neuroimaging methods. Finally,
NIRS can tolerate subject motion to a larger extent
than fMRI, provided that the NIRS head probe
remains fixed to the head of the subject. This has
allowed the NIRS technique to more easily study
subject populations that have been traditionally
difficult to study with fMRI, including infants
[23,63,64], children [31,65], and the elderly [43]. This
has also allowed NIRS to be used for studies requir-
ing subject motion, for example, to study the effects
of exercise [66,67] or posture [68] on cerebral signals.
As the NIRS technology continues to advance,

there is an increasing need for the development of
standardized processing and analysis tools. In this
paper, we review several methods of analysis and sig-
nal processing that have been introduced in recent
years for dealing with specific issues of NIRS experi-
ments. In the context of the discussion of these meth-
ods, we describe the practical implementation of
these methods within HomER, a program for func-
tional NIRS data analysis and visualization.
HomER, which is an acronym for hemodynamic op-
tically measured evoked response, is a suite of open-
source MATLAB (MathWorks, Natick, Massachu-
setts) programs interfaced together by a front-end
graphical user interface. For basic analysis, the
HomER program allows the user to calculate
hemodynamic changes in oxyhemoglobin and deoxy-

hemoglobin concentrations from raw light intensity
time series acquired at different wavelengths. The
program contains an assortment of signal processing
tools for more advanced analysis, including bandpass
filters to remove instrumental or physiological noise
contributions, subject motion correction filters [64],
and principal component-based filters to remove sys-
temic physiology [69,70]. HomER also contains var-
ious tools for block averaging and linear regression of
stimulus epochs for conventional analysis of func-
tional data, as blocked, event-related, and multiple
condition experimental designs. Both single subject
and group-averaged responses can be estimated with
relative statistical analysis. Last, HomER incorpo-
rates the tools for basic optical image reconstruction,
allowing for both backprojection and tomographic re-
constructions of functional data. These latter fea-
tures allow the users to visualize static images
and movies of functional activity.

B. Theory of Optical Imaging

Although they were already introduced in the pre-
vious section, here we will define the fundamentals
of optical imaging and, in particular, the theory de-
scribing the relationships between measured signals
at the instrument and underlying physiological
quantities of interest, namely, hemoglobin changes.
In this paper, we will focus on continuous wave
(CW) optical measurements, as these are most often
used in brain imaging experiments because of their
achievable higher temporal resolution and the lower
cost of photon detectors, which allows a greater num-
ber of spatially resolved measurements. CW NIRS
imaging uses a stable light source, which sends a con-
tinuous beam of light into the tissue. This light is
monitored as it passes through the sample (e.g., tis-
sue), and the intensity of the detected light is used to
determine the amount of optical absorption by the
sample. Other forms of NIRS imaging, such as
time-domain [71] and frequency-domain [72] meth-
ods, use more complex sources of light to measure
the phase of the returning light or the temporal
distribution of photons after they have migrated
through the sample. In a typical CW NIRS brain
functional study, a grid of light sources and photon
detectors is positioned on the head of a subject
and used to noninvasively monitor optical ab-
sorption changes in the tissue volume between each
source and detector pair, as illustrated in Fig 1. By
using diffusion approximations and finite-element
or Monte-Carlo-based computational methods
[12,13,16,73–76], we can estimate the sensitivity
profile for each source–detector pair on the basis
of the optical properties of the tissue as shown in
Fig 1(a). From the surface of the head, light reaches
the outer 5–8mm of brain tissue after passing
through the scalp (0:5–1 cm), skull (0:5–1 cm), and
cerebral spinal fluid (0–2mm) layers. The thickness
of these layers, especially skull and cerebral spinal
fluid, can vary depending on age, gender, or
other intersubject factors. Since, the thickness and
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composition of these tissue layers influences how
light propagates through the head, regional or inter-
subject differences may affect the sensitivity of a
NIRS measurement to brain activity and may create
potential biases in the spatial localization of brain
activity [77]. This is one of the drawbacks of nonin-
vasive optical imaging. In recent years, several
groups [3,78–81] have introducedmethods to account
for this by incorporating anatomical volumetric data
from MRI or computerized tomography to define the
spatial boundaries of the skull and scalp and thus
improve knowledge of where the light has traveled
within the head. Several Monte Carlo and finite-
element codes have been described to use such ana-
tomical information to generate solutions of the
optical forward problem and to determine how
a change in absorption within a tissue layer pro-
jects into a change in detected light intensity
[12,13,16,73–76]. For more information about the
optical forward problem, the recent review by Gibson
et al.[4] offers an introduction to this problem.
During brain activation, increases in blood flow

and volume and oxygen metabolism compete to raise
and lower the blood oxygen saturation, respectively
(see Buxton et al. [82] for a review of the use of vas-
cular biophysical models of these relationships). As
the levels of oxyhemoglobin and deoxyhemoglobin
change, light is differentially absorbed compared
with the rest state (baseline). The change in light ab-
sorption, referred to as delta optical density, ΔOD,
can be calculated from the normalized changes in
the light incident on a detector from a source posi-
tion. Formally, ΔOD is defined as

Φ̂λ
ijðtÞ ¼

Z
rðγÞ

Φ̂λ
ijð0Þe−Δμλabsð r⇀Þ · d r

⇀
; ð1aÞ

ΔODλ
ijðtÞ ¼ Ln

�Φ̂λ
ijð0Þ

Φ̂λ
ijðtÞ

�
; ð1bÞ

where Φ̂ (intensity) describes the amount of light
that was emitted from a source position (i) that be-
comes incident on a given detector position (j).
Δμabs is the change in the absorption coefficient with
respect to the baseline level. These changes are spe-
cific to the wavelength of light examined, which is
indexed by λ. The spatial integrals in Eqs. (1) are
functional path integrals over the volume sampled
by the ensemble of possible photon trajectories
through the tissue, which in turn is defined by the
stochastic diffusion of light in tissue. In general,
the detected light intensity is proportional to the am-
plitude of the voltage signal reported by the photon
detectors, assuming that the instability and possible
nonlinearity of the photon detectors of the NIRS in-
strument used can be neglected. By normalizing the
intensity measurements to the incident light at the
start of the experiment (in practice, usually the mean
of the signal over the course of the study is used),
one can neglect detector efficiency, detector analog

amplification (gain), and the instrument’s absolute
incident laser power, since these appear as scaling
factors that multiply both the numerator and de-
nominator in Eq. (1b). This is an important attribute
of functional imaging by CW NIRS, as this normal-
ization removes the need to calibrate the instrument.
However, this normalization also restricts CW NIRS
to the determination of evoked changes rather then
absolute levels of hemoglobin.

For most optical functional brain measurements,
absorption changes due to hemoglobin are assumed
to be small and, thus, are thought to not perturb the
path of light through the tissue. For a typical vascu-
lar change due to brain activation (around 1–5 μM in
oxyhemoglobin), the expected change in optical
density is 0:1%–1:0% cm−1. In this limit, absorption
changes can be expressed as a linear combination
of the changes in oxyhemoglobin and deoxyhemoglo-
bin (HbO2 and HbR, respectively) by replacing the
path integral in Eq. (1a) with the multiplication by
an effective mean path-length term that represents
the average path of light traveled through the illumi-
nated region [15,83]. The resulting linear re-
lationship between changes in optical density and
changes in the underlying concentration of absorbing
species in the sample is referred to as the Beer–
Lambert law:

ΔODij
λ ¼ Lij

λðελHbRΔ½HbR� þ ελHbO2
Δ½HbO2�Þ; ð2Þ

where the variable ε is the wavelength-dependent ex-
tinction coefficient for each hemoglobin species. In
Eq. (2), Lij is the mean path length traveled by the
light from the source i to the detector j. However,
since light propagation through biological tissue fol-
lows a diffuse rather than a straight path, the Beer–
Lambert law must be adjusted for the additional
effective distance traveled by light as it scatters
through the tissue. Also, since the tissue region
where the absorption is presumed to be changing
(e.g., the brain) is only a small fraction of the volume
that the diffuse light samples, partial volume correc-
tions must also be applied to rescale the magnitude
of absorption changes. The combination of path
length and partial volume scaling can be in-
corporated into a term denoted the differential
path-length factor (DPF) [15] within the modified
Beer–Lambert law (MBLL). Advantages and weak-
ness of this simplified method have been extensively
discussed in several papers [15,84,85]. The net
absorption change at each wavelength due to
changes in hemoglobin concentration is given by
the expression

ΔODij
λ ¼ Lij

λDPFλðελHbRΔ½HbR� þ ελHbO2
Δ½HbO2�Þ;

ð3Þ

where the term DPF (differential path-length factor)
has been added to account for differences between
the linear distance between the source and detector
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pair (Lij) and the true effective mean path length that
light travels as is scatters through the tissue. This
term has wavelength dependence, since the effective
mean path length depends on the scattering proper-
ties of the illuminated tissue. To estimate the change
in optical density related to brain activity, one must
also account for partial volume scaling due to the fact
that hemoglobin changes are not uniformly distribu-
ted along the illuminated tissue but are limited to a
restricted cortical volume. This partial volume effect
results in an underestimation of the effective hemo-
globin changes in the cortex. The effects of scattering
and partial volume can be accounted for by multiply-
ing the linear source–detector separation by addi-
tional differential and partial path-length factors
[3,84–86]. This scaling factors adjust for the effective
path length of light through the region of interest by
approximating that all absorption changes occurs
within a subset of the total sampled volume (i.e.,
brain activity is confined to the cortical layers).
Knowledge of these factors, which depend on the de-
tailed anatomy of the individual subject’s head, limit
the quantitative accuracy of the NIRS method and
can introduce systematic biases in the estimate of
the evoked signal that came from within the brain.
In most NIRS brain activation studies, multiple

wavelength measurements of optical absorption
are often converted to changes in oxyhemoglobin
and deoxyhemoglobin by solving the series of linear
equations posed by the MBLL. Hemoglobin changes
can be estimated by a minimum weighted least-
squares solution to Eq. (3) from data at two or more
wavelengths. This is given by the equation

�
Δ½HbO2�
Δ½HbR�

�
¼ ðETR−1EÞ−1ETR−1

2
64

ΔODλ1=Lλ1DPFλ1

..

.

ΔODλN=LλNDPFλN

3
75;

ð4aÞ
where

E ¼

2
64
ελ1HbO2

ελ1HbR

..

. ..
.

ελNHbO2
ελNHbR

3
75: ð4bÞ

The matrix E contains the extinction coefficients for
oxyhemoglobin and deoxyhemoglobin at each wave-
length measured. In Eqs. (4), the matrix R is defined
as the a priori estimate of the covariance of the mea-
surement error. This equation arises from a weighted
least-squares cost function, and the effect of normal-
ization by this measurement error term is to precon-
dition the measurements by weighting according
to their expected measurement noise levels. For ex-
ample, the larger the error in a particular single
measurement, the less weight it should have in de-
termining the solution to the optical reconstruction
of hemoglobin [81]. In particular, the signal-to-noise
ratio and measurement errors are likely to vary
between measured wavelengths. When the number

of wavelengths measured exceeds the number of un-
knowns, as is the case for three or more wavelengths,
there may no longer be a unique solution of the
MBLL that simultaneously satisfies all measure-
ments. As shown by Yalavarthy et al. [87] in the
context of optical mammography, a more accurate es-
timate of the two hemoglobin species can be achieved
by weighting the multiwavelength measurements
according to the errors in each measurement per-
formed by using this approach. This approach is be-
lieved to be particularly advantageous in cases
where the signal-to-noise ratio differs greatly be-
tween measurement pairs, which is often the case
with real-world data sets [81].

2. Limitations to the Quantification of Hemoglobin by
using Near-Infrared Spectroscopy

The quantification of absolute (e.g., micromolar) he-
moglobin changes is dependent on knowledge of the
differential path-length and partial volume factors
(reviewed in [88,89]). Although the propagation of
light through tissue can either be modeled by using
light transport theory [13,14,16] or be measured ex-
perimentally [83,90], most NIRS experiments do not
have access to this information, as this generally re-
quires an additional MRI or computed axial tomogra-
phy scan to provide anatomical information (e.g.,
[3,78,91]). Several groups have tabulated values of
the differential and partial path-length factors
[17,83,86,90]. Nevertheless, uncertainty in these fac-
tors will ultimately limit the quantitative ability of
NIRS to measure absolute hemoglobin concentration
changes because the path traveled by light through
cortical tissue varies with the wavelength-dependent
scattering properties of the head and head layers [3].
This can give rise to cross-talk errors in the sepa-
ration of oxyhemoglobin and deoxyhemoglobin
estimates [3,86,92] and may be minimized by an op-
timal choice of wavelength pairs as discussed
in [3,86,93].

3. Time-Series Methods in Optical Imaging

Whereas a strength of functional MRI is its spatial
resolution (or more accurately, the ability to directly
solve the MRI image reconstruction problem as com-
pared with the ill-posed nature of spatial reconstruc-
tion in diffuse optical methods), strengths of optical
methods are certainly temporal resolution and the
ability to measure both hemoglobin species more di-
rectly. Sophisticated time-series analysis of func-
tional optical studies is thus very important for
interpreting such studies. Although this topic is
the focus of the remainder of this report, we will be-
gin by acknowledging that much work is still needed
in this field. In particular, the analysis of optical
measurements poses several unique challenges.

Because fMRI and optical experiments usually
have similar designs and hypotheses, many analysis
approaches suited for fMRI have often been applied
with little modification to optical data [94]. Indeed,
much of the analysis of optical imaging has benefited
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from similar advances in fMRI. However, because of
the different biophysics associated with the optical
and fMRI techniques, there are a number of specific
issues, limitations, and methods specific to the opti-
cal technology. Unlike fMRI analysis, which often
draws statistical information from the spatial proxi-
mity of measurements (e.g., voxels in the volume
images) and temporal compression methods from
the assumption of canonical temporal shapes of
the evoked response (e.g., the Γ function response
[95]), analysis of optical data has generally focused
on more traditional time-series methods, including
bandpass filtering, temporal smoothing, and linear
deconvolution, to preserve temporal information
about the evoked functional hemodynamic response
while trying to remove specific artifacts in the mea-
surements, such as cardiac pulsation signals. In the
following sections, we discuss the analysis of the
temporal information in optical measurements and
emphasize the differences in comparison with fMRI
data analysis.

4. Sources of Noise in Near-Infrared Spectroscopy

There are three distinct sources of noise that charac-
terize NIRS measurements: instrumental noise,
experimental errors, and systemic physiological arti-
facts. These three types of error have different prop-
erties and, thus, fit into different parts of a typical
optical analysis stream. For example, instrument
noise and most experimental errors, such as motion
artifacts, are not related to true underlying ab-
sorption changes and should be removed prior to
conversion of signals into oxyhemoglobin and deoxy-
hemoglobin via the Beer–Lambert equation [Eq. (3)].
This will avoid propagation of these errors across
wavelengths, which would cause additional cross
talk in the separation of oxyhemoglobin and deoxy-
hemoglobin. In contrast, physiological noise arises
from biological hemoglobin oscillations. Since these
sources of error affect the multiple optical wave-
lengths in a manner consistent with the Beer–
Lambert equation, there is expected to be a partial
correlation between wavelengths due to their depen-
dence on a common underlying hemoglobin change.
Thus, biological signals are better removed after the
MBLL conversion of the raw signals to hemoglobin
units, where one can take advantage of the differen-
tial contribution to these signals from the arterial
and venous vascular compartments.

A. Instrumental Noise

Electrical noise from the computer or other hardware
in the instrument or from the surrounding space can
create noise in the measurements. In general, such
electrical noise is often assumed to have either a uni-
form frequency spectrum or one that can be mea-
sured using an ex vivo phantom. Since NIRS
instruments often sample at much higher rates than
typical hemodynamic changes, most of the signal
power at the higher sampled frequencies is from
instrumental noise, which can allow an estimate of

the measurement noise properties of the data by as-
suming a known instrument noise profile (e.g., uni-
form or white instrument noise). Much of the high
frequency of this instrument noise can be separated
from physiological signals by low-pass filtering the
data. In general, experimental designs can be opti-
mized for the particular NIRS system by adjusting
the laser intensities of each color of light and detector
gain amplification (if available); external light and
electrical interference can reduce instrumental noise
to nearly negligible compared with the other sources
of noise, particularly physiological noise.

B. Experimental Errors

There are several types of artifact, which we call “ex-
perimental errors,” that may also contribute to the
errors in the analysis of optical studies. For example,
experimental errors may arise as the result of subject
motion or noncompliance with the stimulus para-
digm. In comparison with functional MRI, in which
motion refers to the movement of the subject relative
to the MRI scanner, motion artifacts in optical ima-
ging arise from the potential of the optical fibers to
move on the head, creating a large jump in the de-
tected light signal. Note that if the optical probe is
well secured to the head, the subject may freely move
during the experiment, and several groups have used
this feature in studies involving movement or subject
posture that would be difficult to perform in fMRI, for
example, allowing NIRS to be used to study brain
function during mobility challenges [96]. As a prac-
tical example, we have found that anchoring the op-
tical fibers to an additional place on the subject’s
body, for example, by securing these to a backpack
or harness rather than allowing the fibers to dangle
directly from the subject’s head, can be used to re-
duce motion artifacts by refocusing any tension in
the fiber optics away from the point of contact be-
tween the scalp and the fiber. Tightly wrapping
the optodes on the subject’s head by using bandages
or other wraps to prevent motion artifacts is not re-
commended, since this can make the head gear less
comfortable to wear and thus may promote anxiety
and movement by the participant.

Over the past years, we have worked on several op-
tical probe designs in an attempt to balance the abil-
ity to quickly position the probe on the head, to
maintain stability and avoid movement of the probe
on the head, to provide increased comfort for the sub-
ject (which will reduce subject restlessness and
movement), and to allow flexibility to locally adjust
the optode positions and displace hair from beneath
the optodes to make good contact with the skin. In
Fig. 2, we demonstrate recent optical head probes.
For this probe, our fiber optics are embedded in a
plastic strip, which is affixed with Velcro to a neo-
prene hood. The Velcro can be loosened to allow ac-
cess to move the hair beneath the optical fibers. This
probe was used in studies of visual activation and
used a tomographic (overlapping) measurement
geometry to obtain better spatial resolution [98].
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In general, we recommend that the probe design
match the experiment. For example, if the subject
is going to move around as part of the experiment
(e.g., [96]), the probe needs to be more rigid and se-
cure to the head, which implies that more time may
be needed to place the probe and adjust the hair and
positioning to obtain adequate signals. In contrast, in
other studies quickness of setup may be a more im-
portant design parameter, for example, for imaging
children who will be less patient to sit through a
lengthy setup procedure to place the cap on the head.
In addition, particular care must be taken to avoid
motions caused by a cued task as part of the experi-
mental procedure, for example, a specific head
motion, facial expression, or speech, which can in-
volve facial muscles beneath the straps holding the
probe to the head. A chin strap can be used to hold
the probe on the head more securely (as shown in
Fig. 2); however, in our experience, this may cause
additional problems if the task involves speech.
In addition, experimental errors can also be intro-

duced by the design of the functional task. Although
in many ways experimental design for optical studies
is similar to that used in fMRI (also a hemodynanic
based imaging method), there are several additional
considerations regarding unique attributes of optical
signals. In particular, if filtering and other signal
processing methods will be used in the analysis of
the optical signals, it is important to anticipate these
during the design of the experiment. For example,
improper design of the timing of an experimental
paradigm can introduce errors associated with
numerical instabilities or underdetermination of

the equations associated with functional analysis
and deconvolution techniques [99–102]. In general,
this requires that the timing of stimulus presenta-
tion is designed such that either events are spaced
widely apart in time, as in slow event-related and
most blocked design experiments, or the timing is
optimally jittered to reduce collinearity between col-
umns of the experimental design matrix. This proce-
dure is reviewed in [99]. While longer-duration
stimulation gives better statistical power because
the response builds to a higher level, this type of de-
sign is suboptimal for addressing hypotheses based
on the timing of the transients of the evoked hemo-
dynamic response especially since temporal resolu-
tion is a potential advantage of optical methods. If
a rapid event-related design is used, it is also impor-
tant to consider any linearity assumptions of the
evoked hemodynamic response that must go into
regression analysis, such as the assumption that
repeated evoked responses will add linearly. For
event-related stimulus designs, the hemodynamic
responses may be approximated by this linear sum-
mation, provided that the interstimulus interval is
longer than around 4 s (e.g., [103]). Last, the reprodu-
cibility of results can be affected by a difference in the
positioning of the NIRS probe on the subject’s head,
which can introduce partial-volume and path-length
differences in single-subject longitudinal studies
[104]. Vascular and anatomical differences between
individuals affect the comparisons of results across
multiple subjects [105,10]. These sources of error of-
ten translate to loss of data and need to be dealt with
before data acquisition. Operator expertise, careful
design of probes, and optimized experimental para-
digms can reduce many of these experimental
sources of error. Some, like motion artifacts, can also
be dealt after data acquisition by signal processing
techniques, as will be discussed below.

C. Physiological Fluctuations

Since diffuse optical light spreads as the light pene-
trates deeper into the tissue, NIRS measurements
are much more sensitive to absorption changes in
the superficial layers compared with at the ∼2 cm
depth needed for functional measurements. Thus,
a significant source of noise in optical studies is
due to physiological signals in these superficial
layers. These signals include systemic physiological
hemodynamic fluctuations such as cardiac pulsation,
respiratory signals, and blood pressure changes,
which are present in the scalp and underlying cere-
bral tissue [69,106,107]. Figure 3 demonstrates such
cardiac, respiratory, and blood pressure (Mayer
wave) oscillations seen in a representative NIRS
measurement. Although often these physiological
fluctuations are considered to be noise because they
interfere with the estimate of evoked functional
responses, the sensitivity of NIRS to these physiolo-
gical fluctuations in other applications is not neces-
sarily a negative attribute. Recently, several groups
have begun to use NIRS to explore normal and

Fig. 2. Tomographic optical probe: sample arrangement for a to-
mographic-style probe [97] used for a study of visual activation. To
acquire optical signals from multiple source–detector distances, a
time-multiplexing scheme is used in which our system switches
between three sets of laser on–off states and detector gains (lower
right). In our current system, a complete cycle can be imaged at up
to 3Hz. Overlapping (tomographic) measurements provide more
uniform spatial sensitivity and coverage of the underlying brain.
The theoretical sensitivity profile for this probe is shown in the
upper right-hand panel with contour lines at 5dB intervals based
on a semi-infinite homogeneous (μa ¼ 0:1 cm−1 and μs 0 ¼ 10 cm−1)
slab geometry.
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abnormal vascular physiology, such as vasomotion or
autonomic regulation [69,108–110] in healthy sub-
jects and stroke patients. We will defer discussion
of these signals until later in this paper when we
further discuss specific filtering methods.

5. Reduction of Noise in Optical Signals

A. Methods for Motion Correction

As previously mentioned, there are two points in the
analysis of optical data where noise can be removed,
namely, before and after the conversion to physiolo-
gical hemoglobin concentrations via the MBLL. We
believe that this distinction is important, since many
of the analysis methods that will be discussed in the
following sections are designed to take advantage of
a particular attribute of the noise source. For exam-
ple, if motion artifacts are not removed prior to
the signal normalization to obtain optical density
[Eqs. (1)], then the magnitude of the optical density
changes will be biased and cross talk may be intro-
duced in the estimates of oxyhemoglobin and deoxy-
hemoglobin via the Beer–Lambert equation. While
the best opportunities to deal with such motion arti-
facts occur during the data acquisition and reflect
subject compliance, experimental design, and the ex-
perimenter’s expertise in positioning and securing
the NIRS probe, motion artifacts will undoubtedly
still appear in certain studies. Motion is particularly
common in dealing with infant or animal subjects,
where subject compliance is more difficult to control.
Probe design, as discussed in the previous section,
plays an important role in reducing but often not
completely eliminating these errors. In general, mo-
tion artifacts are represented by very large jumps in
the amplitudes of optical signals as shown in Fig. 3.
Often these are several orders of magnitude larger
then the measurement variance expected from

physiological sources of error within the head, and
this feature can be used to help detect regions af-
fected by motion artifacts. Aside from qualitative vi-
sual inspection, which is often sufficient to identify
large motion errors, it is possible to detect motion
by using more defined criteria such as the analysis
of studentized residuals. Studentized signals are a
method of outlier detection based on the number of
standard deviations between the residual error of
a single measurement and the mean signal; for ex-
ample, the studentized residual is defined by
ðy − ŷÞ=σ, where y is the measurement, ŷ is the model
of the data (which can be generated by filtering or
taking the mean of the data or can be the model gen-
erated by linear regression to find the evoked hemo-
dynamic signals), and σ is the unbiased estimate of
root-mean-squared error of the measurements. This
method can be used to identify extreme outliers by
objective criteria, say, rejecting points that are great-
er then 3 standard deviations from the mean. Outlier
detection can be preformed on either direct signals or
on the temporal derivative of the signal, providing a
means to specifically reject large, rapid jumps in the
signal that are due to motion. Once identified, the
temporal regions affected by motion artifacts can
be excluded from further analysis by either removing
entire stimulus blocks within the region, by remov-
ing columns from the linear regression model used
in the functional analysis, or by excluding the entire
data file or subject. Note, however, that since subject
movement can physically move the NIRS probe or
change the optode couplings to the head, the signal
levels before and after the motion may need to be cor-
rected. This can be a major issue, since it requires a
renormalization of the measured signal or in a worse
case could mean that measurements represent a dif-
ferent brain region. In some cases, this may require
the data to be analyzed in a piecewise fashion to
properly compute normalized intensity in the expres-
sion for optical density changes [Eqs. (1)] before and
after the motion.

B. Eigenvector-Based Reduction of Motion Artifacts

Since motion artifacts arise from the physical displa-
cement of the optical probe from the surface of
the subject’s head, motion artifacts often exhibit sta-
tistically high covariance across multiple source–
detector pairs and across optical wavelengths. This
feature may be used to remove the motion artifact
by using filtering methods based on principal compo-
nent analysis (PCA). PCA (or truncated singular
value decomposition) filters are based on the subtrac-
tion of the eigenvector components exhibiting high
(or low) covariance in the data. This approach was
first demonstrated by Wilcox and co-workers and
was shown to reduce motion artifacts in a study of
infant brain function [64]. The principal components
of the data covariance are calculated by using a stan-
dard procedure for singular value decomposition
(SVD). For removing motion, the covariance of the
data should be calculated from all source–detector

Fig. 3. Physiological fluctuations in optical signals: physiology
fluctuations are generally the dominant source of noise in NIRS
measurements because of the superficial sensitivity of the techni-
que. This figure illustrates cardiac, respiratory, and blood pressure
(Mayer wave) oscillations recorded during a resting period for the
subject. The data also demonstrate a motion artifact, where the
probes shifted during recording and generated a large perturba-
tion of the signal intensity.
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measurement pairs and all wavelengths and thus re-
present should the covariance across the entire set
of measurements. The spatial eigenvectors of this
covariance matrix are defined by the singular value
factorization

C ¼ U · Σ · VH ; ð5aÞ
where

C ¼

2
64
ΔODλ1

fsrc-detg
..
.

ΔODλ2
fsrc-detg

3
75 • ½ΔODλ1

fsrc-detg … �: ð5bÞ

Since motion artifacts will typically have a highly
covariant structure, motion is generally captured in
the first (strongest) eigenvector components. This al-
lows these artifacts to be subtracted from the time
series of the optical density measurements by using
linear regression. The filtered time course of the data
is given by

ΔODFiltered ¼ ΔOD − f tSVD; ð6aÞ

where the PCA filter component is defined by

f tSVD ¼
X
i

wi · σi · vti; ð6bÞ

with the eigenvalue weights (wi) given by

W ¼ ΔOD · V · Σ−1; ð6cÞ

w1 ≥ w2 ≥ wN , and i is summed from 1 to the number
of components to be removed. The vectors σi and υi
represent the ith columns of matrices Σ and V, re-
spectively. For motion correction, typically as many
as 1 or 2 components may be removed, depending
on the total number of measurements in the data
and the structure of the covariance matrix (e.g.,
[64]). An example of this PCA filter is demonstrated
in Fig. 4. Here we show an example data set taken as
part of a NIRS study on object recognition in infants
as described in [64]. The raw data, shown in Fig. 4(a),
demonstrate very strong motion artifacts, which
dominate the optical signals. In addition, these mo-
tion artifacts were covariant across most of the NIRS
probe, making analysis of this data virtually impos-
sible. When this PCA filter is used to remove the first
and second principal components, the motion artifact
is greatly reduced [Figs. 4(b) and 4(c)].

This motion correction algorithm exploits the prop-
erty that a motion artifact has an intense and corre-
lated effect over a large area of the NIRS probe. This
is a general characteristic of motion, but does not
entirely encompass all motion artifacts. This algo-
rithm works best for reducing motion that affects
areas much larger than the functional region. For
a small number of source–detector pairs or a probe

with a spatial coverage comparable with the extent
of the functional region, PCA can negatively affect
the estimate of the hemodynamic response. If used
too strongly, PCA filters can remove brain activation
signals, which typically also exhibit spatial covar-
iance. Statistical metrics, such as the goodness-of-
fit metric of the model (e.g., a partial F test [111])
or an effects test (e.g., T test [95]) for the brain acti-
vation signal can help to decide the optimal number
of principal components to remove.

Alternative approaches to motion correction in-
cluding wavelet filtering [112], Wiener filtering
[113], and autoregression models have been pro-
posed. These methods work on the basis of exploiting
temporal signatures of the motion artifact. In com-
parison, PCA, as described above, is a filter based
on removing spatial covariance structures.

C. Reduction of Physiological Interference

After optical signals have been checked and cor-
rected for motion artifacts, there will still be several
other sources of noise in the data. Physiological
systemic noise arising from the cardiac cycle, re-
spiration, systemic blood pressure, and Mayer
wave fluctuations are a common component of
signal interference in NIRS measurements
[3,69,70,106,107,109,114]. In fact, the absence of car-
diac and other fluctuations can be a sign that data
quality is low (perhaps because of poor coupling of
the optical probe with the head) and often serve as
a quality assurance test to indicate that func-
tional analysis will not be possible. Background
physiological signals have been explored and may

Fig. 4. Example of motion artifact removal by principal compo-
nent (PCA) filtering. The raw data shown in (a) is experimental
data measured in the inferior temporal cortex in an infant pre-
sented with an object recognition task [64]. The data were domi-
nated by several motion artifacts that resulted from themovement
of the probe on the head’s surface. These motion artifacts were
highly covariant across the entire probe. (b) and (c) show the fil-
tered data after the removal of the first and second principal com-
ponents. After reduction of the covariance in the data by the
removal of these components, the motion artifacts were greatly re-
duced. The gray shading indicates the presentation of stimuli.
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in fact reveal interesting details about vascular phy-
siology [69]. However, in most studies, attempts are
made to reduce background physiological signals.
Generally, these techniques are designed around spe-
cific characteristics of physiology based on either
(i) known approximate frequency content of signals,
(ii) the spatial covariance of physiology, or (iii) the
ability to remotely measure physiological signals
from areas away from the functional activation sig-
nal either from a measurement pair in a different
brain region, a measurement pair with a short se-
paration distance, or direct measurements of phy-
siology at extracranial locations. Several of these
techniques will be discussed in the following sections.

D. Bandpass Filtering Techniques

Bandpass filtering, which removes specific frequency
content from the measured signals, can provide a
method for effectively removing many sources of
noise in the data. Low-pass filters can be used to
remove high-frequency instrument noise and the fast
cardiac oscillations. High-pass filters, which remove
slow, low-frequency content, can be used to remove
physiological noise such as blood pressure oscilla-
tions, which are generally found between 0:08–
0:12Hz, or cardiac pulsation (around 1Hz,
60 × beats=min). Although bandpass filtering can
be used to remove extreme low- and high-frequency
noise, these approaches must be used carefully to
avoid accidentally removing frequencies associated
with the functional hemodynamic response. Thus,
bandpass filtering can generally not be used to re-
move respiratory signals and some components of
the blood pressure signal, since these contain fre-
quency bands that overlap with the typical content
of the hemodynamic response. As a result, to remove
these specific effects, bandpass filtering cannot be
used without also compromising the stimulus
response frequency bands. Alternatives to conven-
tional bandpass filtering, such as the use of wavelets
[115,116] or adaptive filtering [118,119], have also
been used in optical and fMRI to remove systemic
physiology from specific frequency bands while
preserving the evoked response.

E. Eigenvector-Based Reduction of Spatial Covariance

Often a feature of systemic physiology is its spatial
covariance. For example, signal changes due to the
breathing cycle fluctuate across the brain in a speci-
fic and repeated spatial pattern. Similar to its use for
motion correction, PCA may also be used to remove
physiological noise by taking advantage of this spa-
tial structure. PCA-based physiological filtering
methods have been previously described by Zhang
and co-workers [70]. Similar to motion artifacts, sys-
temic fluctuations are covariant between the NIRS
measurements from different regions of the head.
Thus, the reduction of this covariance can be used
to filter physiology of systemic origin from the
measurements. In comparison with the motion cor-
rection, for this PCA filter, the spatial covariance

in Eqs. (5) and (6) is calculated from a separate base-
line (rest state) data set, rather than from the func-
tional data themselves. By using a separate baseline
time course to derive the spatial structure associated
with background systemic physiology, the principal
component filter can be used to remove covariance
from functional data that have spatial patterns simi-
lar to the baseline data. Since systemic signals are
different for oxyhemoglobin and deoxyhemoglobin,
the spatial covariance used in this PCA analysis
[Eq. (6)] is calculated and applied separately for
the data corresponding to each of the two hemo-
globin species by computing and applying PCA to
separate covariance matrices for oxyhemoglobin
and deoxyhemoglobin.

In Fig. 5, we demonstrate how the reduction of
spatial covariance allows the better localization he-
modynamic activation associated with a functional
motor task by the removal of global, systemic
changes. This data, which was previously described
in Franceschini and co-workers [69], demonstrates
that in addition to the regional cerebral changes,
functional tasks may result in additional global sys-
temic changes, which must be accounted for. During
the finger-tapping task, shown in Fig. 5, changes in
heart rate, respiration, and blood pressure resulted
in a task-associated, global hemodynamic response.
These changes result in the appearance of a func-
tional activation over nearly the entire head of the
subject, as shown in Fig. 5(a). By using the PCA filter
to project the strongest principal components cal-
culated from a separate baseline recording, the
resulting filtered response was localized to the con-
tralateral motor cortex [Fig. 5(b)]. Similar to the
use of PCA for motion correction, the baseline de-
rived eigenvectors can either be removed from the
data in a preprocessing step as described by Zhang
et al. ([70,124]) or used as additional regressors of
the data within the general linear model as part of
the estimation of functional activation.

Fig. 5. Removing systemic physiological noise by PCA: NIRS
measurements are often sensitive to systemic fluctuations arising
from blood pressure changes, respiration, or the cardiac cycle. As a
complication, this physiology may change during the performance
of intense stimulus tasks, such as motor activity. As is shown in (a),
these changes can result in a systemic response giving the appear-
ance of global functional activation. (b) When the PCA filter de-
scribed in the text is used to remove this systemic effect by
reducing this covariance, the activation region is localized to
the motor area. These data were previously published in [69].
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F. Empirically Derived Filters of Systemic Physiology

A final method for removing systemic physiological
noise that we will discuss is the use of auxiliary mea-
surements of systemic physiology to design specific
filters for the optical measurements. As demon-
strated by Diamond and co-workers [108], the linear
model can also be used to remove systemic physiolo-
gical signals by incorporating external measure-
ments of cardiac, respiratory, or blood pressure
oscillations as model regressors. Similar methods
have also been proposed for reducing noise in fMRI
signals [120,121]. In this approach, it is assumed
that the observed hemodynamic signal can be ex-
pressed as a linear sum of the contributions of both
the functional stimulus and the additional systemic
physiological terms, i.e.,

Y ¼ Ustim ⊗ βresponse þUCardiac ⊗ βCardiac
þUBP ⊗ βBP þ…: ð7Þ

In Eq. (7), U is the regression variable. The stimulus
regressor (Ustim) describes the timing of the ex-
perimental task. ⊗ is the convolution operator.
The systemic regressors for the cardiac, blood pres-
sure (BP), or respiration signals are externally
measured signals such as from a dynamic blood pres-
sure cuff, pulse oximetry, or an electrocardiogram in-
strument. The impulse response function (β) for each
of these regressors describes the transfer function
from the regression variable to the effect on the ob-
servation. The convolution of the regressor and the
individual transfer function (U ⊗ β) can describe
the identified component in the observations. This
approach is very similar to the methods termed RET-
ROICOR for analysis of functional MRI developed by
Glover and colleagues [120]. One important differ-
ence between the application of these methods to
fMRI versus optical data is that the higher temporal
resolution of the optical data allows a high-temporal-
resolution transfer function to be estimated to relate
the recorded external physiology and the optical sig-
nals. In comparison, for removal of systemic signals
from fMRI, which is often sampled at only once every
1–3 s, only a single temporal shift of the systemic
physiology is used to filter the data.
A demonstration of this approach as used in the

HomER program is provided in Fig 6. In this figure,
we show the analysis of simulated evoked hemody-
namic responses with experimentally measured
baseline physiological signals from a finger pulse oxi-
meter and beat-to-beat blood pressure cuff (low-pass
filtered) added on top of the response. We used both
of these signals as regressors in a linear model as gi-
ven by Eq. (7) to separate the raw signal (left) into
three components (right panels) corresponding to
the models of the evoked response, cardiac-related,
and blood-pressure-related signals.

6. Estimation of functional signals in NIRS

Since the CW NIRS technique is capable of measur-
ing only hemodynamic changes and is unable to

report baseline values, the most common use of
this technique is to assess the brain’s functional re-
sponse to stimulation. In general, most analysis of
functional hemodynamic changes in neuroimaging
techniques such as NIRS or fMRI is based on an as-
sumption of the linear addition of hemodynamic
changes. In the linear model, the effects of hemody-
namic variations are additive with the individual
components summing linearly to give the measured
total signal change. For example, the hemodynamic
responses associated with multiple types of stimuli
or overlapping responses are assumed to add to give
the overall measured signal. In this model, the obser-
vations of hemodynamic changes over time can be
expressed as a series of linear equations, described
by the equations

Y ¼ Ustim ⊗ β þ e; ð8aÞ

Y ¼ G · β þ e: ð8bÞ

In this notation, Y is the recorded time series of ob-
servations of a hemodynamic variable. β represents
the parameter vector, for which we wish to solve. The
operator ⊗ represents convolution of the regression
variable (i.e., the timing of stimuli) with the impulse
response to that regressor (β, i.e., the hemodynamic
response). In the matrix form of Eq. (8b), the matrix
G is typically termed the design matrix. When multi-
plied by the impulse response functions (β), this
matrix performs the convolution of the regression
parameters and the response functions. The effects
of individual responses are summed to reproduce
the observations. Last, the final term in Eqs. (8), e,
is the error in each measurement. This is generally

Fig. 6. Linear filtering of systemic physiology based on auxiliary
measurements. Here we demonstrate the use of auxiliary mea-
surements to improve the estimate of the functional hemodynamic
response. Without the removal of these signals by bandpass filter-
ing, the calculated hemodynamic response is heavily corrupted by
these fluctuations. When the cardiac cycle and blood pressure fluc-
tuations are used as additional regression variables, the functional
hemodynamic response is more clearly separated from the effects
of these systemic variables. The regression of this data with the
external physiological measurements allows the separation of
the data into the functional and systemic contributions. The pa-
nels on the right (b)–(d) show the separated system components
for the evoked response (b), the cardiac related response (c) and
the blood pressure component (d) composing the raw data (a).
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assumed to be normally distributed, zero-mean,
random noise.
To estimate the mean effect of each individual

functional response, we must perform a deconvolu-
tion of Eqs. (8) to estimate β. The minimum least-
squares solution to this linear equation is provided
by the equation [122]

β̂ ¼ ðGt ·GÞ−1 ·Gt · Y: ð9Þ

The superscript t represents the transpose matrix
operation. The efficiency of this deconvolution equa-
tion is optimized by the careful experimental design
of the timing of stimulus presentation [99–102]. In-
appropriate stimulus timing can result in cross talk
between components of β or create an ill-posed struc-
ture for the matrix G, which prevents inversion or
introduces numerical imprecision. In addition, the
nonlinear effects of short interstimulus intervals
should also be considered, which may affect the
assumption of the linear model.

7. Canonical Temporal Functions in Optical Imaging

As previously mentioned, in fMRI analysis, a typical
a priori assumption is made about the temporal
shape of the hemodynamic response. For example,
a canonical temporal basis set, which model the re-
sponse as a combination of one or more Γ-variant or
Gaussian functions (e.g., [123]), is often used as an
assumption to describe the shape of the response
and to provide a support vector for modeling the
evoked response. In other words, an assumption is
made that the evoked response may be modeled as
a linear combination of these functions (e.g., see
[95]). For the analysis of brain activation signals, this
approach has several advantages. First, it reduces
the number of unknowns in the model, thereby im-
proving the statistical power of certain statistical
metrics (for example, an F test). Second, canonical
basis functions impose a priori assumptions on the
model; for example, using a basis set of spline func-
tions or multiple Gaussian curves can impose a spe-
cific level of temporal smoothness on the evoked
response. This approach can offer vast improvements
to the detection efficiency of the evoked response and
greatly simplify statistical testing. Because the
evoked response is reduced to one or a few numerical
values, it is more straightforward to perform
statistical tests of whether this value is nonzero,
thereby rejecting the null hypothesis that the signal
did not change. Reduction of the number of para-
meters tested also reduces the possibility of finding
a false positive because of multiple comparisons.
In contrast, traditional deconvolution methods pro-
vide an estimation of the full time course of the
evoked response by estimating each point indepen-
dently. This provides a model-free estimate of the
shape of the evoked response but adds the complexity
of having to choose a temporal window for de-
fining the statistical test and introduces multiple

comparison concerns from the many more para-
meters that could be tested.

While canonical basis functions offer several
advantages for the analysis of NIRS data (e.g.,
[94,124]), there are still several issues to consider.
First, the specific hypothesis that will be tested will
influence whether a canonical basis is appropriate
and, if so, determine which basis should be used.
As discussed previously, one of the advantages of op-
tical imaging is the higher temporal resolution in
comparison with fMRI. This resolution allows for
an additional dimension in which to pose a hypoth-
esis. That is, we can test on the basis of not only mag-
nitude, but also timing differences. For example, a
hypothesis might be that a specific form of cognitive
impairment increases the duration of the evoked oxy-
hemoglobin response. We can also ask questions
about relative timing parameters; for example,
increased cerebral vascular reserve will delay the on-
set of deoxyhemoglobin response relative to the
oxyhemoglobin response (there is evidence of this
from hypercapnia studies, e.g., [125]). In using a ca-
nonical basis set to test timing-based hypotheses, it
is important to choose the basis functions appropri-
ately so that uniform sensitivity to different dy-
namics of the evoked response can be achieved.
Work by Zhang et al. [124] and Diamond et al.
[109] both used a large number of Gaussian basis
functions to capture the temporal dynamics of the
evoked response. Similarly Boverman et al. used a
similar basis set based on spline functions to model
dynamics in optical mammography [126]. An alter-
native is to use a nonlinear estimation procedure
[127–130]. In this approach, an underlying temporal
function, such as a Γ-variant functional form or
biological model, may be assumed, but the timing
parameters are unknowns estimated by using a
minimization routine. This allows additional hypoth-
esis to be statistically tested based on the recovered
values and uncertainty of the timing parameters.

A second issue that must be addressed concerning
the use of canonical functions in NIRS analysis is the
uniformity of sensitivity to oxyhemoglobin and deox-
yhemoglobin changes. Unlike fMRI, which typically
reports a single type of functional contrast, NIRS
measures two distinct signals (oxyhemoglobin and
deoxyhemoglobin), and each of these is expected to
have a slightly different timing (e.g., [10]). Thus,
the use of a single common set of canonical basis
functions to model both of the hemoglobin responses
will give rise to nonuniform detection efficiencies of
the oxyhemoglobin and deoxyhemoglobin changes.
The canonical basis functions must be carefully cho-
sen not to sacrifice the spectroscopic resolution of the
NIRS measurements. For example, if a canonical
function that was optimized to model the deoxyhe-
moglobin response were used (i.e., taken from the
fMRI literature, e.g., [131]), this would give good sen-
sitivity to detect significant deoxyhemoglobin
changes, but would not guarantee the same sensitiv-
ity to estimate oxyhemoglobin changes, which can
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have different timing [10]. Because of the assump-
tion that the expected experimental response can
be modeled by the canonical response, the sensitivity
of this approach is influenced by the proper choice of
the canonical model. Using a model optimized to
describe the timing of deoxyhemoglobin may not
be able to model oxyhemoglobin as well and would
result in an underestimation of the significance of
oxyhemoglobin changes in comparison with deoxyhe-
moglobin changes. Therefore, any interpretation
of relative oxyhemoglobin and deoxyhemoglobin
changes would depend on the basis functions chosen.
Care must be exercised in choosing these basis func-
tions correctly to provide uniform sensitivity to both
hemoglobin species. The recent work by Plichta and
co-workers compared the model-based and model-
free analysis of the NIRS-measured hemodynamic
response to graded visual stimuli [132]. In this work,
Plichta and co-workers demonstrated the use of a
Gaussian temporal basis function along with its first
and second derivatives in order to linearly model
both the oxyhemoglobin and deoxyhemoglobin re-
sponses. Although they showed that this canonical
model was able to model both hemoglobin signals sig-
nificantly, the correlation between the model-based
and model-free estimates was consistently lower
for the deoxyhemoglobin model that for the oxyhemo-
globin model.
Although canonical models improve the contrast-

to-noise ratio and statistical power of the resulting
hemodynamic responses with NIRS [107,124,133],
more investigation is needed to verify and choose ba-
sis functions that will not compromise the temporal
and spectroscopic resolutions of NIRS, which are
amongst the strengths of this technique. In compar-
ison with fMRI, NIRS instruments generally have
better temporal resolutions (fMRI can typically
achieve 2–3 s). This temporal resolution allows the
potential to distinguish responses based on temporal
characteristics such as onset or peak times. Which of
these parameters or hemoglobin species is most
informative in analysis and hypothesis testing is
not clear.

8. HomER—Graphical Interface for Functional
Near-Infrared Spectroscopy Signals

The HomER program is based on a flexible data ar-
chitecture, which allows data to be imported with
limited preparatory processing from virtually any
currently existing commercial NIRS system. The
analysis of this data can be tailored to allow the users
complete versatility to specify the details of their ex-
periment, including NIRS probe geometry and lay-
out, optical wavelength selection, stimulus design,
and other instrumental and acquisition parameters.
A screen shot of the HomER program is shown in
Fig 7. Example files and scripts are provided along
with the download of the program demonstrating
the preconditioning of data for import into HomER.
Although HomER is principally designed for CW
NIRS measurements, both time-domain [83,135]

and frequency-domain [136] data can be analyzed
with additional preprocessing. The HomER program
has been made freely available and is available from
the Photon Migration Imaging Laboratory at the
Massachusetts General Hospital ([6]). This program
is available in both its native MATLAB format as
open source code and as a compiled standalone ex-
ecutable binary program. The standalone executable
is distributed with the MATLAB Runtime Compiler
and will run under Windows NT or higher. The open-
sourceMATLAB code is written for MATLAB version
7.0 or higher.

The structure of the HomER program is based on
three levels of data processing as shown in Fig 8.
(i) At the first level, individual data files are repre-
sented. This level contains the data for a single
experimental run, for example, a single acquisition
scan. Scan-level processing allows the data from a
single experimental run to be interactively visua-
lized, time-series data filtered, and analyzed for
functional responses. For a typical experiment, mul-
tiple such data files will be recorded within a single
experimental session. (ii) The session level repre-
sents the second organizing level in HomER. This
level includes the joint processing of one or more in-
dividual data files for a single experimental subject,
recorded during a single session. At the session level,
response averages and effects analysis can be calcu-
lated from multiple data runs. First-level statistical
tests can be performed to investigate the significance
of functional changes (i.e., the F test and T test). In
addition, images of the changes in optical absorption
or hemoglobin concentrations can be reconstructed
from these session averages. Session-level data
should have consistent optical probe placement

Fig. 7. Screen shot of the HomER program. The layout of the
HomER program is based around an interactive graphical display
of the NIRS probe, shown in the upper right (b). The user specifies
this probe geometry within the data file imported into HomER as
described in the text. By selecting source (displayed as “x”) or de-
tector (‘o”) positions on this probe layout, the user navigates
through the display of their data. The original data are shown
in (a) and the average evoked response is shown in (c). The data
presented are described in [134] and were recorded during a 20 s
finger-tapping task. Data shown are from a single run of one of the
subjects.
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and geometry to allow analysis between scans. (iii) At
the final level of processing, multisession or group
information is represented. This allows group
averaging from multiple experimental subjects or
multiple sessions from the same subject. Data pro-
cessing at this level is allowed for region-of-interest
comparisons to avoid intersubject registration is-
sues. At all of these three levels, data analysis, visua-
lization, and data export are provided for MATLAB
and ASCII formats.
The primary purpose of the design of the HomER

program is to provide the users with easy, quick, and
productive interaction and visualization of their
data. The program has been designed such that
the user should be able to interact with their data
from the level of a general overview, handling large
data sets, down to the detailed management of indi-
vidual time courses from a single measurement be-
tween a source and detector pair. In HomER, the
detailed management of individual measurements
is facilitated by a visual layout of the NIRS probe cre-
ated from user-specified probe geometry and a list of
data measurements in the raw data file. By interac-
tively selecting source or detector positions from the
NIRS probe, the user is able to toggle the display of
different measurements. The time-series data dis-
play is color-coded with lines drawn between the cor-
responding source and detector positions on the
NIRS probe. Data can be discarded from analysis, ex-
ported to file, or copied to the clipboard function by
simply clicking on one of these lines. This probe im-
age allows the user to interact with the data for both
the individual data file and session levels of proces-
sing. The user can interactively navigate through
their data with ease by clicking on the probe geome-
try exactly as it was set up during data acquisition,
allowing the results of an experiment to be easily
viewed. The probe also allows users ameans to prune
measurements from the analysis for subjective

reasons, such as the presence of motion artifacts,
or objectively based on a low signal-to-noise ratio
or source–detector separation criterion.

In addition to the interaction across the spatial di-
mensions of the probe, HomER allows the user to vi-
sually interact with the time-series data by enabling
the user to remove subject motion or other artifacts
from the data. Regions of time can be highlighted and
discarded from functional averaging or deconvolu-
tion of the hemodynamic response. These regions
can also be discarded from the calculation of the data
covariance used in the PCA filtering as described ear-
lier in this paper. In addition to selecting blocks of
time, individual stimulus epochs can also be removed
prior to functional analysis. These two features allow
the user to manually select regions of time that are
affected by motion or other artifacts. Several statis-
tical based plots, such as studentized residual analy-
sis for outlier detection, F tests, and other analysis of
variance analyses, are also included in HomER for
the analysis of functional data.

For filtering, HomER offers both bandpass and
PCA-based filtering modules. Bandpass filtering is
done by using an finite-impulse response (FIR) mod-
el. The default FIR filter used in HomER is a fourth-
order Butterworth filter and filters twice in a forward
and inverse pass of the data using the MATLAB
function filtfilt. This back-and-forth filter reduces
accumulation of phase in the data and offers approxi-
mately a twofold better rejection in the stop band.
Additional options can be selected to specify the char-
acteristics of the filter model (stop band, order, and
type of filter). Three options are given for PCA ana-
lysis to allow (i) motion correction (see [64] for an ex-
ample), (ii) physiological correction using a separate
baseline file (see [117]), and (iii) physiological correc-
tion using components derived and applied to the
current file.

In HomER, functional responses can be calculated
by using either block averaging or a deconvolution
model based on the estimation of an FIR impulse re-
sponse. These methods use an ordinary least-squares
fit of the data. The estimation of the evoked response
is performed subsequent to filtering and motion cor-
rection. Responses are calculated for both the change
in optical density and the change in oxyhemoglobin
and deoxyhemoglobin. Individual files (scans) are
processed first and then averaged together to calcu-
late the average response for a session. Selected
regions of interest can also be averaged within and
across subjects. Regions of interest are specified
based on either T statistics calculated from the ef-
fects of the functional model or from F tests describ-
ing the ability of the model to fit the data. Joint
probabilities across specific wavelengths or hemoglo-
bin types are not currently calculated.

Finally, HomER also includes basic tools for image
reconstruction. HomER currently supports calcula-
tions of the optical forwardmodel (sensitivity matrix)
from a homogeneous, semi-infinite, slab geometry,
using the analytic form given in [11]. The user is

Fig. 8. Levels of analysis in HomER. The HomER program archi-
tecture is based on three levels of analysis and processing: a single
experimental scan, a session (single subject), and group analysis.
At each level, various options for processing, visualization,
and data management are offered.
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given options to specify the absorption and scattering
properties of the medium at each wavelength. Cur-
rently only CW forward models are supported.
Images are reconstructed by using either the back-
projection method (default) or via a Tikhonov regu-
larized inverse. For reconstruction of images of
hemoglobin, HomER uses a spectral prior incorpo-
rated into the inverse problem as described in
[137,138]. Movies of the functional response can also
be reconstructed and saved by using HomER.

9. Conclusions and Future Directions

The NIRS technology will continue to make advances
toward the understanding of the functioning human
brain. Along with the ever-increasing applications
for this technology, innovations will continue to be
made in the methods used to analysis this data. In
the future, it is hoped that the HomER program
will provide the framework to disseminate these
advances. By providing HomER as a free resource,
it is our hope that this program will continue to grow
and advance along with the NIRS field.
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