Integrated nanophotonics devices for high-bandwidth, ultra-low energy photonic data links

Integrated nanophotonics devices for high-bandwidth, ultra-low energy photonic data links offer solutions to the increase in energy consumption from computation and communication systems that has come with the rapid growth of information technology in the 21st century. Data transmission starts to consume even more energy than data processing in microprocessors, servers and data centers due to resistive losses and RC delay in electrical interconnects. Optical interconnection, on the other hand, does not have bandwidth limit or resistive losses as its electrical counterpart, thereby providing an idea solution to high bandwidth, ultralow energy data links. Our research aims to integrate nanophotonic devices monolithically on silicon chips to achieve electronic-photonic synergy, combining the merits of photons in data transmission with electrons in data processing. Recent research focuses on low-temperature (<450C) integration of nanophotonic devices such as photodetectors and photonic modulators with back end of line (BEOL) CMOS technology.

Faculty contact: Jifeng Liu