Lynd Research Lab: Microbial Cellulose Utilization

The Lynd Lab has a long-standing focus on fundamental and applied aspects of microbial cellulose utilization, including aspects of microbial physiology, kinetics, bioenergetics, microbial ecology, and robustness under process-relevant conditions.

Ten most recent papers:

  • Liang, X., J.M. Whitham, E.K. Holwerda, X. Shao, L. Tian, Y.-W. Wu, V. Lombard, B. Henrissat, D.M. Klingeman, Z.K. Yang, M. Podar, T.L. Richard, J.G. Elkins, S.D. Brown, L.R. Lynd. 2018. Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. Biotechnology for Biofuels, 11 (1), art. no. 243. doi: 10.1186/s13068-018-1238-1.

  • Bomble, Y. J., C. Y. Lin, A. Amore, H. Wei, E. K. Holwerda, P. N. Ciesielski, … M. E. Himmel, 2017. Lignocellulose deconstruction in the biosphere. Current Opinion in Chemical Biology.

  • Lynd, L.R., A.M. Guss, M.E. Himmel, D. Beri, C. Herring, E.K. Holwerda, S.J.L. Murphy, D.G. Olson, J.Paye, T. Rydzak, X. Shao, L. Tian, R. Worthen.  2016. Advances in consolidated bioprocessing using Clostridium thermocellum and Thermoanaerobacter saccharolyitcum.  pP 365-394 In: C. Wittmand and J.C.Liao (eds.) Industrial Biotechnology: Microorganisms.  Wiley-VCH Verlag & Co., KGaA.  

  • Herring C.D., W.R. Kenealy, A. Joe Shaw, S.F. Covalla, D.G. Olson, J. Zhang, W. Ryan Sillers, V. Tsakraklides, J.S. Bardsley, S.R. Rogers, et al. 2016. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. Biotechnol. Biofuels 9:125-141. doi: 10.1186/s13068-016-0536-8. (Article)
  • Xu Q., M.G. Resch, K. Podkaminer, S. Yang, J.O. Baker, B.S. Donohoe, C. Wilson, D.M. Klingeman, D.G. Olson, S.R. Decker, R.J. Giannone, R.L. Hettich, S.D. Brown, L.R. Lynd, E.A. Bayer, M.E. Himmel, Y.J. Bomble. 2016. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv. 2016 Feb 5;2(2):e1501254. doi: 10.1126/sciadv.1501254. (Article)
  • Herring C.D., P.G. Thorne, L.R. Lynd. 2016. Clostridium thermocellum releases coumaric acid during degradation of untreated grasses by the action of an unknown enzyme. Appl Microbiol Biotechnol. Mar;100(6):2907-15. doi: 10.1007/s00253-016-7294-1. (Abstract)
  • Paye J.M., A. Guseva, S.K. Hammer, E. Gjersing, M.F. Davis, B.H. Davison, J. Olstad, B.S. Donohoe, T.Y. Nguyen, C.E. Wyman, S. Pattathil, M.G. Hahn, L.R. Lynd. 2016. Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnol Biofuels. Jan 12;9:8. doi: 10.1186/s13068-015-0412-y.  (Abstract)
  • Sand A., E.K. Holwerda, N.M. Ruppertsberger, M. Maloney, D.G. Olson, Y. Nataf, I. Borovok, A.L. Sonenshein, E.A. Bayer, R. Lamed, L.R. Lynd, Y. Shoham. 2015. Three cellulosomal xylanase genes in Clostridium thermocellum are regulated by both vegetative SigA (σ(A)) and alternative SigI6 (σ(I6)) factors. FEBS Lett. Oct 7;589(20 Pt B):3133-40. doi: 10.1016/j.febslet.2015.08.026. (Abstract)
  • Rooney E.A., K.T. Rowe, A. Guseva, M. Huntemann, J.K. Han, A. Chen, N.C. Kyrpides, K. Mavromatis, V.M. Markowitz, K. Palaniappan, N. Ivanova, A. Pati, K. Liolios, H.P. Nordberg, M.N. Cantor, S.X. Hua, N. Shapiro, T. Woyke, L.R. Lynd, J.A. Izquierdo. 2015. Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a. Genome Announc. Jul 23;3(4). pii: e00797-15. doi: 10.1128/genomeA.00797-15. (Abstract)
  • Dykstra, A.B., L. St. Brice, M. Rodriguez Jr., B. Raman, J.A. Izquierdo, K.D. Cook, L.R. Lynd, R.L. Hettich. 2014. Development of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complex. J Proteome Res. 13(2):692-701. (Abstract)

Additional papers:

  • Izquierdo, J.A., S. Pattathil, A. Guseva, M.G. Hahn, L.R. Lynd. 2014. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material. Biotechnol. Biofuels, 7:136. (Abstract)
  • Holwerda, E.K., P.G. Thorne, D.G. Olson, D. Amador-Noguez, N.L. Engle, T.J. Tschaplinski, J.P. van Dijken, L.R. Lynd. 2014. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnol. Biofuels. 7:155. (Article)
  • Reed, P.T., J.A. Izquierdo, L.R. Lynd. 2014. Cellulose fermentation by Clostridium thermocellum and a mixed consortium in an automated repetitive batch reactor. Bioresour. Technol. 155:50-56. (Article)
  • Currie, D.H., A.M. Guss, C.D. Herring, R.J. Giannone, C.M. Johnson, P.K. Lankford, S.D. Brown, R.L. Hettich, L.R. Lynd. 2014. Profile of Secreted Hydrolases, Associated Proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the Degradation of Hemicellulose. Appl. Environ. Microbiol. 80:5001-5011. (Abstract)
  • St Brice, L.A., X. Shao, J.A. Izquierdo, L.R. Lynd. 2014. Optimization of affinity digestion for the isolation of cellulosomes from Clostridium thermocellum. Prep. Biochem. Biotech. 44(2):206-216. (Abstract)
  • Dumitrache, A., G.M. Wolfaardt, D.G. Allen, S.N. Liss, L.R. Lynd. 2013. Tracking the cellulolytic activity of Clostridium thermocellum biofilms. Biotech. Biofuels. 6:175-187. (Article)
  • Holwerda, E.K., L.R. Lynd. 2013. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Biotechnol. Bioeng. 110(9):2389-2394. (Abstract)
  • Holwerda, E.K., L.D. Ellis, L.R. Lynd. 2013. Development and evaluation of methods to infer biosynthesis and substrate consumption in cultures of cellulolytic microorganisms. Biotechnol. Bioeng. 110(9):2380-2388. (Abstract)
  • Olson, D.G., R.J. Giannone, R.L. Hettich, L.R. Lynd. 2013. Role of the CipA scaffoldin protein in cellulose solubilization, as determined by targeted gene deletion and complementation in Clostridium thermocellum. J. Bacteriol. 195(4):733-739. (Abstract)
  • Waller, B.H., D.G. Olson, D.H. Currie, A.M. Gu, L.R. Lynd. 2013. Exchange of type II dockerin-containing subunits of the Clostridium thermocellum cellulosome as revealed by SNAP-tags. FEMS Microbiol. Lett. 338(1):46-53. (Abstract)
  • Zhou, J., D.G. Olson, D.A. Argyros, Y. Deng, W.M. van Gulik, J.P. van Dijken, L.R. Lynd. 2013. Atypical glycolysis in Clostridium thermocellum. Appl. Environ. Microbiol. 79(9):3000-3008. (Abstract)
  • Podkaminer, K.K., A.M. Guss, H.L. Trajano, D.A. Hogsett, L.R. Lynd. 2012. Characterization of xylan utilization and discovery of a new endoxylanase in Thermoanaerobacterium saccharolyticum through targeted gene deletions. Appl. Environ. Microbiol. 78(23):8441-8447. (Abstract)
  • Mearls, E.B., J.A. Izquierdo and L.R. Lynd. 2012. Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms. BMC Microbiol. 12:180. (Abstract)
  • Izquierdo, J.A., L. Goodwin, K.W. Davenport, H. Teshima, D. Bruce, C. Detter, R. Tapia, S. Han, M. Land, L. Hauser, C.D. Jeffries, J. Han, S. Pitluck, M. Nolan, A. Chen, M. Huntemann, K. Mavromatis, N. Mikhailova, K. Liolios, T. Woyke, L.R. Lynd. 2012. Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci. 6(1):104-115. (Abstract)
  • Dumitrache, A., G. Wolfaardt, G. Allen, S.N. Liss and L.R. Lynd. 2012. Form and Function of Clostridium thermocellum Biofilms. Appl. Environ. Microbiol. 79(1):231-239. (Abstract)
  • Olson, D.G., S.A. Tripathi, R.J. Giannone, J. Lo, N.C. Caiazza, D.A. Hogsett, R.L. Hettich, A.M. Guss, G. Dubrovsky, L.R. Lynd. 2010. Deletion of the Cel48S cellulase from Clostridium thermocellum. PNAS. 107(41):17727-17732. (Abstract)
  • Lu, Y., Y.-H.P. Zhang, L.R. Lynd. 2006. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. PNAS. 103(44):16165-16169. (Abstract)
  • Zhang, Y.-H.P., L.R. Lynd. 2005. Cellulose utilization by Clostridium thermocellum: Bioenergetics and hydrolysis product assimilation. PNAS. 102:7321-7325. (Abstract)
  • Lynd, L.R., P.J. Weimer, W.H. van Zyl, I.S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66:506-577. (Abstract)