Lynd Research Lab: Metabolic Engineering

The Lynd Lab's Metabolic Engineering group specializes in development and application of techniques for the genetic manipulation of cellulose- and hemicellulose-utilizing anaerobic bacteria pursuant to improving their properties and performance for production of cellulosic biofuels.

Ten most recent papers:

  • Hon, S., E.K. Holwerda, R.S. Worthen, M.I. Maloney, L. Tian, J. Cui, P.P. Lin, L.R. Lynd, D.G. Olson. 2018. Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production. Biotechnology for Biofuels, 11 (1), art. no. 242. doi: 10.1186/s13068-018-1245-2.

  • Zheng, T., A.A. Lanahan, L.R. Lynd, D.G. Olson. 2018. The redox-sensing protein Rex modulates ethanol production in Thermoanaerobacterium saccharolyticum.  PLoS ONE, 13 (4), art. no. e0195143. doi: 10.1371/journal.pone.0195143.

  • Eminoǧlu, A., S .J. L. Murphy, M. Maloney, A. Lanahan, R. J. Giannone, R. L. Hettich, … D. G. Olson. 2017. Deletion of the hfsB gene increases ethanol production in Thermoanaerobacterium saccharolyticum and several other thermophilic anaerobic bacteria. Biotechnology for Biofuels, 10(1), 1–11.

  • Tian, L., S. J. Perot, S. Hon, J. Zhou,  X. Liang, J. T. Bouvier, … L. R. Lynd. 2017. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase. Microbial Cell Factories, 16(1), 1–10.

  • Tian, L., S. J. Perot, D. Stevenson, T. Jacobson, A. A. Lanahan, D. Amador-Noguez, … L. R. Lynd. 2017. Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol. Biotechnology for Biofuels, 10(1), 1–11.

  • Zheng, T., J. Cui, H. R. Bae, L. R. Lynd,  & D. G. Olson. 2017. Expression of adhA from different organisms in Clostridium thermocellum. Biotechnology for Biofuels, 10(1), 1–5.

  • Dash, S., A. Khodayari, J. Zhou, E.K. Holwerda, D.G. Olson, L.R. Lynd, C.D. Maranas. 2017. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations.” Biotechnol. Biofuels 10: 108. doi:10.1186/s13068-017-0792-2.

  • Hon, S., D.G. Olson, E.K.. Holwerda, A.A. Lanahan, S.J.L. Murphy, M.I. Maloney, T. Zheng, B. Papanek, A.M. Guss, L.R. Lynd. 2017. The ethanol poathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.” Metabolic Engineering 42:175–84. doi:10.1016/j.ymben.2017.06.011.

  • Lo, J., D.G. Olson, S.J.L. Murphy, L. Tian, S. Hon, A. Lanahan, A.M. Guss, L.R. Lynd.  2017.  Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metabol. Eng. 39:71-79.

  • Olson, D.G., M. Hörl, T. Fuhrer, J. Cui, Ji. Zhou, M.I Maloney, D. Amador-Noguez, L. Tian, U. Sauer, L.R. Lynd.  2017.  Glycolysis without pyruvate kinase in Clostridium thermocellum.  Metabol. Eng. 39:169-180.

Additional papers:

  • Zheng, T., D.G. Olson, S.J. Murphy, X. Shao, L. Tian, L.R. Lynd.  2017. Both adhE and a separate NADPH-dependent alcohol dehydrogenase gene, adaA, are necessary for high ethanol production in Thermoanaerobacterium saccharolyitcum.  J. Bacteriol. 199:e00542-16.

  • Zhou, J., X. Shao, D.G. Olson, S.J.L. Murphy, L. Tian, L.R. Lynd. 2017. Determining the roles of the three alcohol dehydrogenases (AdhA, AdhB, AdhE) in Thermoanaerobacter ethanolicus during ethanol fermentation. J. Indust. Microbiol. Biotechnol., 1-13.
  • Beri D., D.G. Olson, E.K. Holwerda, L.R. Lynd. 2016. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. FEMS Microbiol. Lett, 363(11). doi: 10.1093/femsle/fnw091. (Abstract)
  • Groom J., D. Chung, D.G. Olson, L.R. Lynd, A.M. Guss, J. Westpheling.  2016. Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature. Metab. Eng. Commun. 3:30–38. doi: 10.1016/j.meteno.2016.01.004. (Article)
  • Hon S., A.A. Lanahan, L. Tian, R.J. Giannone, R.L. Hettich, D.G. Olson, L.R. Lynd. 2016. Development of a Plasmid-Based Expression System in Clostridium thermocellum and its use to Screen Heterologous Expression of bifunctional alcohol dehydrogenases (adhEs). Metab. Eng. Commun. 3:120-129. doi: 10.1186/s13068-016-0528-8. (Article)
  • Shao X., J. Zhou, D.G. Olson, L.R. Lynd. 2016. A markerless gene deletion and integration system for Thermoanaerobacter ethanolicus. Biotechnol. Biofuels 9:100-108. doi: 10.1186/s13068-016-1514-1. (Article)
  • Tian L., B. Papanek, D.G. Olson, T. Rydzak, E.K. Holwerda, T. Zheng, J. Zhou, M. Maloney, N. Jiang, R.J. Giannone, R.L. Hettich, A.M. Guss, L.R. Lynd. 2016. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol. Biofuels 9:116-127. doi: 10.1186/s13068-016-0528-8. (Abstract)
  • Thompson R.A., D.S. Layton, A.M. Guss, D.G. Olson, L.R. Lynd, C.T. Trinh. 2015. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Metab Eng. 32:207-19. doi: 10.1016/j.ymben.2015.10.004. (Abstract)
  • Zhou J., D.G. Olson, A.A. Lanahan, L. Tian, S.J. Murphy, J. Lo, L.R. Lynd. 2015. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Biotechnol Biofuels. Sep 15;452-8:138. doi: 10.1186/s13068-015-0304-1. (Abstract)
  • Biswas, R., T. Zheng, D.G. Olson, L.R. Lynd, A.M. Guss. 2015. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol. Biofuels. 8:20. (Abstract)
  • Lo, J, T. Zheng, D.G. Olson, N. Ruppertsberger, S.A. Tripathi, A.M. Guss, L.R. Lynd. 2015. Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and its effect on metabolism. J Bacteriol. doi:10.1128/JB. 00347-15. (Abstract)
  • Mearls, E.B., D.G. Olson, C.D. Herring, L.R. Lynd. 2015. Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-6610-5. (Abstract)
  • Currie, D.H., B. Raman, C.M. Gowen, T.J. Tschaplinski, M.L. Land, S.D. Brown, S.F. Covalla, D.M. Klingeman, Z.K. Yang, N.L. Engle, C.M. Johnson, M. Rodriguez, A.J. Shaw, W.R. Kenealy, L.R. Lynd, S.S. Fong, J.R. Mielenz, B.H. Davison, D.A. Hogsett, C.D. Herring. 2015. Genome-scale resources for Thermoanaerobacterium saccharolyticum. BMC Syst Biol. 9:30 (Abstract)
  • Olson, D.G., M. Maloney, A.A. Lanahan, S. Hon, L.J. Hauser, L.R. Lynd. 2015. Identifying promoters for gene expression in Clostridium thermocellum. Metab. Eng. Commun. 2:23-29. (Article)
  • Zheng, T., D.G. Olson, L. Tian, Y.J. Bomble, M.E. Himmel, J. Lo, S. Hon, A.J. Shaw, J.P. van Dijken, L.R. Lynd. 2015. Cofactor specificity of the bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol. 197(15):2610–2619. (Abstract)
  • Olson, D.G., R. Sparling, L.R. Lynd. 2015. Ethanol production by engineered thermophiles. Curr Opin Biotechnol. 33:130–141. (Abstract)
  • Lo, J., T. Zheng, S. Hon, D.G. Olson, L.R. Lynd. 2015. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol. 197(8):1386–1393. (Abstract)
  • Mearls, E.B., L.R. Lynd. 2014. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum. Anaerobe. 28:109–119. (Abstract)
  • Biswas, R., S. Prabhu, L.R. Lynd, A.M. Guss. 2014. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One. 9(2):e86389. (Article)
  • Bhandiwad, A., A.J. Shaw, A. Guss, A. Guseva, H. Bahl, L.R. Lynd. 2014. Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metab. Eng. 21:17-25. (Article)
  • Olson, D.G., L.R. Lynd. 2012. Transformation of Clostridium thermocellum by electroporation. Method Enzymol. 510:317-330. (Abstract)
  • Argyros, D.A., S.A. Tripathi, T.F. Barrett, S.R. Rogers, L.F. Feinberg, D.G. Olson, J.M. Foden, B.B. Miller, L.R. Lynd, D.A. Hogsett and N.C. Caiazza. 2011. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. Environ. Microbiol. 77(23):8288-8294. (Article)
  • Brown, S.D., A.M. Guss, T.V. Karpinets, J.M. Parks, N. Smolin, S. Yang, M.L. Land, D.M. Klingeman, A. Bhandiwad, M. Rodriguez, B. Raman, X. Shao, J.R. Mielenz, J.C. Smith, M. Keller and L.R. Lynd. 2011. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. PNAS. 108(33):13752-13757. (Abstract)
  • Shaw, A.J., K. Podkaminer, S.G. Desai, J.S. Bardsley, S.R. Rogers, P.G. Thorne, D.A. Hogsett, L.R. Lynd. 2008. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. PNAS. 105:13769-13774. (Abstract)